/MAT/LAW21 (DPRAG)

Block Format Keyword This law, based on Drucker-Prager yield criteria, is used to model materials with internal friction such as rock-concrete. The plastic behavior of these materials is dependent on the pressure in the material.

This law is similar to /MAT/LAW10 (DPRAG1); the only difference being that in this law, the pressure is input as a user-defined function of volumetric strain. This law is compatible only with solid elements.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW21/mat_ID/unit_ID or /MAT/DPRAG/mat_ID/unit_ID
mat_title
ρiρi                
E νν            
A0 A1 A2 Amax    
fct_IDf   Kt FscaleP        
ΔPminΔPmin Pext            
B μmaxμmax            

Definition

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
mat_title Material title

(Character, maximum 100 characters)

 
ρiρi Initial density

(Real)

[kgm3][kgm3]
E Young's modulus

(Real)

[Pa][Pa]
νν Poisson's ratio

(Real)

 
A0 Material plasticity coefficient.

(Real)

[Pa2][Pa2]
A1 Material plasticity coefficient.

(Real)

[Pa][Pa]
A2 Material plasticity coefficient.

(Real)

 
Amax Limiting von Mises stress.

Default set to 1030 (Real)

[Pa2][Pa2]
fct_IDf Function identifier describing P(μ)P(μ) .

(Integer)

 
Kt Tensile bulk modulus. 3

(Real)

[Pa][Pa]
FscaleP Pressure function scale factor.

Default = 1.0 (Real)

[Pa][Pa]
ΔPminΔPmin Minimum pressure.

Default = -1030 (Real)

[Pa][Pa]
Pext External pressure. 4

Default = 0 (Real)

 
B Unloading bulk modulus. 3

(Real)

[Pa][Pa]
μmaxμmax Maximum volumetric strain in compression. 5

(Real)

 

Example (Sand)

Comments

  1. Hydrodynamic behavior is given by a user-defined function P=f(μ)P=f(μ) .
    Where,
    P
    Pressure in the material
    μμ
    Volumetric strain with μ=ρρ01μ=ρρ01

    mat_law10A
    Figure 1.
  2. Drucker-Prager yield criteria uses a modified von Mises yield criteria to incorporate the effects of pressure for massive structures:(1)
    F=J2(A0+A1P+A2P2)F=J2(A0+A1P+A2P2)

    mat_law10B
    Figure 2.
    Where,
    J2J2
    Second invariant of deviatoric stress, with σVM=3J2σVM=3J2
    P
    Pressure, with P=I13P=I13 ( I1I1 is the first stress invariant)
    A0, A1, and A2
    Material plasticity coefficients
    A1=A2=0A1=A2=0
    Yield criteria is von Mises ( σVM=3A0σVM=3A0 )
  3. It is recommended to set Unloading Bulk modulus, B is equal to the initial slope of function describing P(μ)P(μ) and Tensile Bulk modulus Kt equal to 1/100 of Unloading Bulk modulus B and Kt must be positive.
  4. External pressure is needed in case of relative pressure formulation. In this specific case, yield criteria and energy integration require total pressure value. Radioss outputs a pressure which is relative to PextPext . You can conclude the total pressure value from:(2)
    P=Pext+ΔPP=Pext+ΔP
    Total pressure limit is concluded from:(3)
    Pmin=Pext+ΔPminPmin=Pext+ΔPmin

    If Pext=0Pext=0 , the output result is a total pressure:

    P=ΔPP=ΔP and Pmin=ΔPminPmin=ΔPmin

  5. B is unloading bulk modulus. If B is defined, then it must be greater than any slope dPdμdPdμ in [0,μmax][0,μmax] .
    • If B=0B=0 and μmax=0μmax=0 , the unloading and loading paths are the same.
    • If B=0B=0 or μmax0μmax0 , the default value for B is B=dPdμ|μmaxB=dPdμμmax .
    • If B0B0 or μmax=0μmax=0 , the default value for μmaxμmax is B=dPdμ|μmaxB=dPdμμmax .

    loading_unloading
    Figure 3.