/MAT/LAW21 (DPRAG)
Block Format Keyword This law, based on Drucker-Prager yield criteria, is used to model materials with internal friction such as rock-concrete. The plastic behavior of these materials is dependent on the pressure in the material.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW21/mat_ID/unit_ID or /MAT/DPRAG/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
ρiρi | |||||||||
E | νν | ||||||||
A0 | A1 | A2 | Amax | ||||||
fct_IDf | Kt | FscaleP | |||||||
ΔPminΔPmin | Pext | ||||||||
B | μmaxμmax |
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material
identifier (Integer, maximum 10 digits) |
|
unit_ID | Unit Identifier (Integer, maximum 10 digits) |
|
mat_title | Material
title (Character, maximum 100 characters) |
|
ρiρi | Initial
density (Real) |
[kgm3][kgm3] |
E | Young's
modulus (Real) |
[Pa][Pa] |
νν | Poisson's
ratio (Real) |
|
A0 | Material plasticity
coefficient. (Real) |
[Pa2][Pa2] |
A1 | Material plasticity
coefficient. (Real) |
[Pa][Pa] |
A2 | Material plasticity
coefficient. (Real) |
|
Amax | Limiting von Mises
stress. Default set to 1030 (Real) |
[Pa2][Pa2] |
fct_IDf | Function identifier
describing
P(μ)P(μ)
. (Integer) |
|
Kt | Tensile bulk modulus.
3 (Real) |
[Pa][Pa] |
FscaleP | Pressure function scale
factor. Default = 1.0 (Real) |
[Pa][Pa] |
ΔPminΔPmin | Minimum
pressure. Default = -1030 (Real) |
[Pa][Pa] |
Pext | External pressure. 4 Default = 0 (Real) |
|
B | Unloading bulk modulus.
3 (Real) |
[Pa][Pa] |
μmaxμmax | Maximum volumetric strain
in compression. 5 (Real) |
▸Example (Sand)
Comments
- Hydrodynamic behavior is given by a
user-defined function
P=f(μ)P=f(μ)
.Where,
- P
- Pressure in the material
- μμ
- Volumetric strain with μ=ρρ0−1μ=ρρ0−1
Figure 1. - Drucker-Prager yield criteria uses a
modified von Mises yield criteria to incorporate the effects of pressure for
massive structures:
(1) F=J2−(A0+A1P+A2P2)F=J2−(A0+A1P+A2P2)Figure 2.Where,- J2J2
- Second invariant of deviatoric stress, with σVM=√3J2σVM=√3J2
- P
- Pressure, with P=−I13P=−I13 ( I1I1 is the first stress invariant)
- A0, A1, and A2
- Material plasticity coefficients
- A1=A2=0A1=A2=0
- Yield criteria is von Mises ( σVM=√3A0σVM=√3A0 )
- It is recommended to set Unloading Bulk modulus, B is equal to the initial slope of function describing P(μ)P(μ) and Tensile Bulk modulus Kt equal to 1/100 of Unloading Bulk modulus B and Kt must be positive.
- External pressure is needed in
case of relative pressure formulation. In this specific case, yield criteria and
energy integration require total pressure value. Radioss outputs a pressure which is relative to
PextPext
. You can conclude the total pressure value
from:
(2) P=Pext+ΔPP=Pext+ΔPTotal pressure limit is concluded from:(3) Pmin=Pext+ΔPminPmin=Pext+ΔPminIf Pext=0Pext=0 , the output result is a total pressure:
P=ΔPP=ΔP and Pmin=ΔPminPmin=ΔPmin
- B is
unloading bulk modulus. If B is defined, then it must be greater
than any slope
dPdμdPdμ
in
[0,μmax][0,μmax]
.
- If B=0B=0 and μmax=0μmax=0 , the unloading and loading paths are the same.
- If B=0B=0 or μmax≠0μmax≠0 , the default value for B is B=dPdμ|μmaxB=dPdμ∣∣μmax .
- If B≠0B≠0 or μmax=0μmax=0 , the default value for μmaxμmax is B=dPdμ|μmaxB=dPdμ∣∣μmax .
Figure 3.