RD-V: 0032 Spring (TYPE8)

Spring force/moment as function of elongation/rotation for different stiffness formulations.

The subject of this study is to verify the behavior of the general spring element using different stiffness formulations with a defined elongation or rotation.

Options and Keywords Used

Input Files

必要なモデルファイルのダウンロードについては、モデルファイルへのアクセスを参照してください。

Model Description with Different Translational Stiffness Formulations

Units: Mg, s, mm, MPa

The model contains 5 spring elements with the same length of 0 mm and different properties:
  • Elastic linear stiffness
    • K=2N/mm
  • Nonlinear elastic stiffness
    • Force versus displacement function:
      Elongation
      Force
      -20
      -20
      -1
      -10
      0
      0
      1
      10
      20
      20
    • Linear stiffness K=50N/mm used for transition
  • Nonlinear plastic stiffness with isotropic hardening (H=1)
    • Same force versus displacement function and same linear stiffness
    • Plastic behavior with H=1
    • Linear stiffness K=50N/mm used for transition
  • Nonlinear plastic stiffness with uncoupled hardening (H=2)
    • Same force versus displacement function and same linear stiffness
    • Plastic behavior with H=2
    • Linear stiffness K=50N/mm used for transition
  • Nonlinear plastic stiffness with nonlinear unloading (H=6)
    • Same force versus displacement function and same linear stiffness
    • Nonlinear unloading force versus displacement:
      Elongation
      Force
      -10
      -20
      -5
      -1
      0
      0
      5
      1
      10
      20
    • Plastic behavior with H=6
    • Linear stiffness K=50N/mm used for transition

Imposed displacement is defined on one end of the spring element to model tensile and compression (displacement +/- 20mm) with constant velocity of 200mm/s.

The other end of the spring element is clamped.

Results

Computation results for the force versus elongation for the direction X. The results are identical for the other direction Y and Z.


図 1. force versus elongation
Computation results for the force versus time.


図 2. force versus time
Theoretical value for the force according to time.
表 1. Theoretical Results
Time Elastic Linear Stiffness Nonlinear Elastic Nonlinear Plastic Stiffness with Isotropic Hardening (H=1) Nonlinear Plastic Stiffness with Isotropic Hardening (H=2) Nonlinear Plastic Stiffness with Nonlinear Unloading (H=6)
t=0.1s 40 20 20 20 20
t=0.2s 0 0 -30.10526316 0 -20
t=0.3s -40 -20 -40.63157895 -20 -30.52631579
t=0.4s 0 0 50.30249307 0 9.473684211

Model Description with Different Rotational Stiffness Formulations

Units: Mg, s, mm, MPa

The model contains 5 spring elements with the same length of 0 mm and different properties:
  • Elastic linear stiffness
    • K= 12.73239545 Nmm/rad
  • Nonlinear elastic stiffness
    • Moment versus rotation function:
      Elongation
      Force
      -3.141592654
      -20
      -.157079633
      -10
      0
      0
      .157079633
      10
      3.141592654
      20
    • Linear stiffness K=318.3098862 Nmm/rad used for transition
  • Nonlinear plastic stiffness with isotropic hardening (H=1)
    • Same moment versus rotation function and same linear stiffness
    • Plastic behavior with H=1
    • Linear stiffness K= 318.3098862 Nmm/rad used for transition
  • Nonlinear plastic stiffness with uncoupled hardening (H=2)
    • Same moment versus rotation function and same linear stiffness
    • Plastic behavior with H=2
    • Linear stiffness K= 318.3098862 Nmm/rad used for transition
  • Nonlinear plastic stiffness with nonlinear unloading (H=6)
    • Same force versus rotation function and same linear stiffness
    • Nonlinear unloading force versus rotation:
      Rotation
      Force
      -1.570796327
      -20
      -.785398163
      -1
      0
      0
      .785398163
      1
      1.570796327
      20
    • Plastic behavior with H=6
    • Linear stiffness K= 318.3098862 Nmm/rad used for transition

Imposed displacement is defined on one end of the spring element to model rotation (rotation +/- π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@3793@ rad – 180 degrees) with constant velocity of 200mm/s.

The other end of the spring element is clamped.

Results

Computation results for the moment versus rotation for the direction X. The results are identical for the other direction Y and Z.


図 3. moment versus rotation
Computation results for the moment versus time.


図 4. moment versus time
Theoretical value for the force according to time.
表 2. Theoretical Results
Time Elastic Linear Stiffness Nonlinear Elastic Nonlinear Plastic Stiffness with Isotropic Hardening (H=1) Nonlinear Plastic Stiffness with Isotropic Hardening (H=2) Nonlinear Plastic Stiffness with Nonlinear Unloading (H=6)
t=0.1s 40 20 20 20 20
t=0.2s 0 0 -30.10526316 0 -20
t=0.3s -40 -20 -40.63157895 -20 -30.52631579
t=0.4s 0 0 50.30249307 0 9.473684211

Model Description for Different Translational Viscous Formulation

Units: Mg, s, mm, MPa

The model contains 5 spring elements with the same length of 0 mm with the same stiffness and different viscous formulation:
  • Nonlinear elastic stiffness
    • Force versus displacement function:
      Elongation
      Force
      -5
      -20
      -1
      -10
      0
      0
      1
      10
      5
      20
  • Elongation rate dependency
    • Linear value
    • Stiffness scale factor
    • Force versus elongation rate scale factor function:
      Elongation
      Force
      -10
      -0.1
      0
      0
      10
      0.1
    • Damping versus elongation rate function:
      Elongation
      Damping
      -10
      -1
      0
      0
      10
      1
    • Damping versus elongation rate function with higher velocity

      The imposed displacement function abscissa (time) is scaled by 0.5 to double the constant loading velocity.

Imposed displacement is defined on one end of the spring element to model tension and compression (displacement +/- 5mm) with constant velocity of 50mm/s (with abscissa scale factor 1.0) or1 00mm/s (with abscissa scale factor 0.5). The rotational degrees of freedom at this end of the spring are fixed to see only shear behavior.

The other end of the spring element is clamped.

Results

Computation results for the force versus time for X translational direction. The results are identical for the direction Y and Z.


図 5. force versus time
Theoretical value for the force according to time.
表 3. Theoretical Results
Time Nonlinear Elastic Nonlinear Elastic + C Nonlinear Elastic + Velocity-based Force Function Scale Nonlinear Elastic + Velocity-based Damping Function (200 mm/s) Nonlinear Elastic + Velocity-based Damping Function (400 mm/s)
t=0.1s (V+) 20 25 30 25 30
t=0.1s (V-) 20 15 30 15 10
t=0.2s (V-) 0 -5 0 -5 -10
t=0.3s (V-) -20 -25 -30 -25 -30
t=0.3s (V+) -20 -15 -30 -15 -10
t=0.4s (V+) 0 5 0 5 10

Model Description for Different Rotational Viscous Formulation

Units: Mg, s, mm, MPa

The model contains 5 spring elements with the same length of 0 mm and with the same stiffness and different viscous formulation:
  • Nonlinear elastic stiffness
    • Moment versus rotation function:
      Rotation
      Moment
      -3.141592654
      -20
      -.157079633
      -10
      0
      0
      .157079633
      10
      3.141592654
      20
  • Elongation rate dependency
    • Linear value
    • Stiffness scale factor
    • Force versus rotation rate scale factor function:
      Elongation
      Force
      -10
      .636619772
      0
      0
      10
      .636619772
    • Damping versus rotation rate function:
      Elongation
      Damping
      -10
      -6.366197724
      0
      0
      10
      6.366197724
    • Damping versus rotation rate function with higher velocity

      The imposed displacement function abscissa (time) is scaled by 0.5 to double the constant loading velocity.

Imposed rotation is defined on one end of the spring element to model rotation (displacement +/- π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@3793@ rd) with constant velocity of 10. π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@3793@ rd/s (with abscissa scale factor 1.0) or 20. π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdahaaa@3793@ rd/s (with abscissa scale factor 0.5). The displacement Y and Z at this end of the spring are fixed to avoid shear deformation and see only bending.

The other end of the spring element is clamped.

Results

Computation results for the moment versus time for X rotational direction. The results are the same for Y and Z rotational directions.


図 6. moment versus time
Theoretical value for the moment according to time.
表 4. Theoretical Results
Time Nonlinear Elastic Nonlinear Elastic + C Nonlinear Elastic + Rotational Velocity-based Force Function Scale Nonlinear Elastic + Rotational Velocity-based Damping Function (200 mm/s) Nonlinear Elastic + Velocity-based Damping Function (400 mm/s)
t=0.1s (V+) 20 40 60 40 60
t=0.1s (V-) 20 0 60 0 -20
t=0.2s (V-) 0 -20 0 -20 -40
t=0.3s (V-) -20 -40 60 -40 -60
t=0.3s (V+) -20 0 60 0 20
t=0.4s (V+) 0 20 0 20 40

Conclusion

The Radioss computations returns results very close to the theoretical values with the expected behavior for the elastic or plastic behavior.

The different options to model the translation or rotation rate effect returns the expected results