Particle Kinematics

Kinematics deals with position in space as a function of time and is often referred to as the "geometry of motion". 1 The motion of particles may be described through the specification of both linear and angular coordinates and their time derivatives. Particle motion on straight lines is termed rectilinear motion, whereas motion on curved paths is called curvilinear motion. Although the rectilinear motion of particles and rigid bodies is well-known and used by engineers, the space curvilinear motion needs some feed-back, which is described in the following section.

Space Curvelinear Motion

The motion of a particle along a curved path in space is called space curvilinear motion. The position vector R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aaciGGsbaaaa@39AF@ , the velocity v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aaciGGsbaaaa@39AF@ , and the acceleration of a particle along a curve are:(1)
R = x i ^ + y j ^ + z k ^
(2)
= R ˙ = x ˙ i ^ + y ˙ j ^ + z ˙ k ^
(3)
a = R ¨ = x ¨ i ^ + y ¨ j ^ + z ¨ k ^
Where x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F3@ , y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F3@ and z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F3@ are the coordinates of the particle and i ^ , j ^ and k ^ the unit vectors in the rectangular reference. In the cylindrical reference ( r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F3@ , θ , z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F3@ ), the description of space motion calls merely for the polar coordinate expression:(4)
v = v r + v θ + v z

Where,

v r = r ˙

v θ = r θ ˙

v z = z ˙

Also, for acceleration:(5)
a = a r + a θ + a z

Where,

a r = r ¨ r θ ˙ 2

a θ = r θ ¨ + 2 r ˙ θ ˙

a z = z ¨

The vector location of a particle may also be described by spherical coordinates as shown in 図 1.(6)
v = v R + v θ + v φ

Where,

v R = R ˙

v θ = R θ ˙ cos φ

v φ = R φ ˙

Using the previous expressions, the acceleration and its components can be computed:(7)
a = a R + a θ + a φ

Where,

a R = R ¨ R φ ˙ 2 R θ ˙ 2 cos 2 φ

a θ = cos φ R d d t ( R 2 θ ˙ ) 2 R θ ˙ φ ˙ sin φ

a φ = 1 R d d t ( R 2 φ ˙ ) + R θ ˙ 2 sin φ cos φ

The choice of the coordinate system simplifies the measurement and the understanding of the problem.


図 1. Vector Location of a Particle in Rectangular, Cylindrical and Spherical Coordinates

Coordinate Transformation

It is frequently necessary to transform vector quantities from a given reference to another. This transformation may be accomplished with the aid of matrix algebra. The quantities to transform might be the velocity or acceleration of a particle. It could be its momentum or merely its position, considering the transformation of a velocity vector when changing from rectangular to cylindrical coordinates:(8)
{ V r V θ V z } = [ cos θ sin θ 0 sin θ cos θ 0 0 0 1 ] { V x V y V z }

or { V rθz }=[ T θ ]{ V xyz }

The change from cylindrical to spherical coordinates is accomplished by a single rotation ϕ of the axes around the θ -axis. The transfer matrix can be written directly from the previous equation where the rotation ϕ occurs in the Rϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGsbGaeyOeI0Iaeqy1dygaaa@3C63@ plane:(9)
{ V R V θ V ϕ } = [ cos ϕ 0 sin ϕ 0 1 0 sin ϕ 0 cos ϕ ] { V r V θ V z }

or { V Rθϕ }=[ T ϕ ]{ V rθz }

Direct transfer from rectangular to spherical coordinates may be accomplished by combining 式 8 and 式 9:(10)
{ V Rθϕ }=[ T ϕ ][ T θ ]{ V xyz }

with: [ T ϕ ][ T θ ]=[ cosϕcosθ cosϕsinθ sinϕ sinθ cosθ 0 sinϕcosθ sinϕsinθ cosϕ ]

Reference Axes Transformation

Consider now the curvilinear motion of two particles A and B in space. Study at first the translation of a reference without rotation. The motion of A is observed from a translating frame of reference x-y-z moving with the origin B (図 2). The position vector of A relative to B is:(11)
r A / B = x i ^ + y j ^ + z k ^
Where i ^ , j ^ and k ^ are the unit vectors in the moving x-y-z system. As there is no change of unit vectors in time, the velocity and the acceleration are derived as:(12)
v A / B = x ˙ i ^ + y ˙ j ^ + z ˙ k ^
(13)
a A / B = x ¨ i ^ + y ¨ j ^ + z ¨ k ^
The absolute position, velocity and acceleration of A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F3@ are then:(14)
r A = r B + r A/B v A = v B + v A/B a A = a B + a A/B


図 2. Vector Location with a Moving Reference
In the case of rotation reference, it is proved that the angular velocity of the reference axes x-y-z may be represented by the vector:(15)
ω = ω x i ^ + ω y j ^ + ω z k ^
The time derivatives of the unit vectors i ^ , j ^ and k ^ due to the rotation of reference axes x-y-z about ω , can be studied by applying an infinitesimal rotation ω d t . You can write:(16)
d d t ( i ^ ) = ω × i ^   ; d d t ( j ^ ) = ω × j ^   ; d d t ( k ^ ) = ω × k ^
Attention should be turned to the meaning of the time derivatives of any vector quantity V = V x i + V y j + V z k in the rotating system. The derivative of V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F3@ with respect to time as measured in the fixed frame X-Y-Z is:(17)
( d V d t ) X Y Z = d d t ( V x i ^ + V y j ^ + V z k ^ )

= ( V x d d t ( i ^ ) + V y d d t ( j ^ ) + V z d d t ( k ^ ) ) + ( V ˙ x i ^ + V ˙ y j ^ + V ˙ z k ^ )

With the substitution of 式 16, the terms in the first parentheses becomes ω × V . The terms in the second parentheses represent the components of time derivatives ( d V d t ) x y z as measured relative to the moving x-y-z reference axes. Thus:(18)
( d V d t ) X Y Z = ω × V + ( d V d t ) x y z

This equation establishes the relation between the time derivative of a vector quantity in a fixed system and the time derivative of the vector as observed in the rotating system.

Consider now the space motion of a particle A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F3@ , as observed both from a rotating system x-y-z and a fixed system X-Y-Z (図 3).


図 3. Vector Location with a Rotating Reference
The origin of the rotating system coincides with the position of a second reference particle B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGcbaaaa@399E@ , and the system has an angular velocity ω . Standing r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOCaaaa@36EB@ for r A / B , the time derivative of the vector position gives:(19)
r A = r B + r v A = v B + r
From 式 18(20)
r ˙ = ( d r d t ) X Y Z = ω × r + v rel
Where, v rel denotes the relative velocity measured in x-y-z, that is: (21)
v rel = ( d r/dt ) x y z = x ˙ i ^ + y ˙ j ^ + z ˙ k ^
Thus, the relative velocity equation becomes:(22)
v A = v B + ω × r + v rel
The relative acceleration equation is the time derivative of 式 22 which gives:(23)
a A = a B + ω ˙ × r + ω × r ˙ + v ˙ rel
Where, the last term can be obtained from 式 18:(24)
v ˙ rel = ( d v rel d t ) X Y Z = ω × v rel + a rel
and (25)
a rel = ( d v rel d t ) x y z = x ¨ i ^ + y ¨ j ^ + z ¨ k ^
Combining 式 23 to 式 25, you obtain upon collection of terms:(26)
a A = a B + ω ˙ × r + ω × ( ω × r ) + 2 ω × v rel + a rel

Where, the term 2 ω × v rel constitutes Coriolis acceleration.

Skew and Frame Notations

Two kinds of reference definition are available in Radioss:
Skew Reference
A projection reference to define the local quantities with respect to the global reference. In fact the origin of skew remains at the initial position during the motion even though a moving skew is defined. In this case, a simple projection matrix is used to compute the kinematic quantities in the reference.
Frame Reference
A mobile or fixed reference. The quantities are computed with respect to the origin of the frame which may be in motion or not depending to the kind of reference frame. For a moving reference frame, the position and the orientation of the reference vary in time during the motion. The origin of the frame defined by a node position is tied to the node. 式 22 and 式 26 are used to compute the accelerations and velocities in the frame.

1 Meriam J.L., 「Dynamics」, John Wiley & Sons, Second edition, 1975.