RMS2

Computes the root mean square area difference between a measured signal and a target curve.

Example

Assume that you are designing a planar four bar mechanism. You want a metric that accurately represents the deviation of the X-coordinate of the CM of the coupler link from a desired profile. The RMS2 response will capture the required deviation metric.

The desired profile for the X-coordinate of the CM of the coupler link is as follows:

[(0.0, 199.997),

(0.1, 78.0588),

(0.2, -35.233),

(0.3, -102.140),

(0.4, -112.560),

(0.5, -78.718),

(0.6, -23.994),

(0.7, 36.862),

(0.8, 157.392),

(0.9, 260.213),

(1.0, 199.997)]



Figure 1.

Here is a code snippet that will compute the RMS2 response for the X-coordinate of the CM of the coupler link coupler.

>>> # Define the X vs. Time profile
>>> xy = [(0.0, 199.997),
          (0.1, 78.0588), 
          (0.2, -35.233),
          (0.3, -102.140), 
          (0.4, -112.560), 
          (0.5, -78.718), 
          (0.6, -23.994),
          (0.7, 36.862),
          (0.8, 157.392), 
          (0.9, 260.213), 
          (1.0, 199.997)]
>>>
>>> # Define the signal to be measured
>>> dx_coupler = "DX ({})".format(coupler.cm.id) 
>>>
>>> # Define the RMS2 response
>>> rms2x = RMS2 (label = "Coupler-DX", targetValue = xy, measuredValue = dx_coupler)

The calculations in RMS2 for this example are implemented as follows:

X = (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)

Y = (199.997, 78.058, -35.233, -102.140, -112.560, -78.718, -23.994, 36.862, 157.392, 260.213, 199.997)

Spline = Spline (x=x, y=y)

Response = T 0 T f ( DX ( 22 , 11 , 11 ) Akispl ( Time,spline ) ) dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qiqrFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabeqadiWa ceGabeqabeqadeqadeaakeaadaWdXaqaamaabmaabaGaaeiraiaabI facaGGOaGaaGOmaiaaikdacaGGSaGaaGymaiaaigdacaGGSaGaaGym aiaaigdacaGGPaGaeyOeI0IaaeyqaiaabUgacaqGPbGaae4Caiaabc hacaqGSbGaaiikaiaabsfacaqGPbGaaeyBaiaabwgacaqGSaGaae4C aiaabchacaqGSbGaaeyAaiaab6gacaqGLbGaaiykaaGaayjkaiaawM caaaWcbaGaamivamaaBaaameaacaaIWaaabeaaaSqaaiaadsfadaWg aaadbaGaamOzaaqabaaaniabgUIiYdGccaqGKbGaaeiDaaaa@55AD@

X = (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)
Y = (199.997, 78.058, -35.233, -102.140, -112.560, -78.718, -23.994, 
     36.862, 157.392, 260.213, 199.997)
Spline = Spline (x=x, y=y)
Response = 
                                
                                    
                                        
                                            
                                                
                                                  
                                                  
                                                  
                                                  T
                                                  0
                                                  
                                                  
                                                  
                                                  
                                                  T
                                                  f
                                                  
                                                  
                                                
                                                
                                                  
                                                  (
                                                  
                                                   DX
                                                  
                                                  (
                                                  
                                                  22,11,11
                                                  
                                                  )
                                                  
                                                  
                                                  Akispl
                                                  
                                                  (
                                                  
                                                  Time,spline
                                                  
                                                  )
                                                  
                                                  
                                                  )
                                                  
                                                
                                            
                                        
                                         dt
                                    
                                    MathType@MTEF@5@5@+=
                                        feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj
                                        xAHbstHrhAaerbuLwBLnhiov2DGi1BTfMBaeXafv3ySLgzGmvETj2B
                                        SbqeeuuDJXwAKbsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr
                                        Ffpecu0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
                                        irpepeKkFr0xfr=xfr=xb9adbaGaaiGadmWaamaaciGaaeWaceabca
                                        GcbaWaa8qmaeaadaqadaqaaabaaaaaaaaapeGaaeiiaiaabseacaqG
                                        ybWaaeWaaeaacaqGYaGaaeOmaiaabYcacaqGXaGaaeymaiaabYcaca
                                        qGXaGaaeymaaGaayjkaiaawMcaaiabgkHiTiaabgeacaqGRbGaaeyA
                                        aiaabohacaqGWbGaaeiBamaabmaabaGaaeivaiaabMgacaqGTbGaae
                                        yzaiaabYcacaqGZbGaaeiCaiaabYgacaqGPbGaaeOBaiaabwgaaiaa
                                        wIcacaGLPaaaa8aacaGLOaGaayzkaaaaleaapeGaamiva8aadaWgaa
                                        adbaWdbiaaicdaa8aabeaaaSqaa8qacaWGubWdamaaBaaameaapeGa
                                        amOzaaWdaeqaaaqdcqGHRiI8aOGaaeiia8qacaqGKbGaaeiDaaaa@6082@