Venting Outgoing Mass Determination

Venting, or the expulsion of gas from the airbag, is assumed to be isenthalpic.

The flow is also assumed to be unshocked, coming from a large reservoir and through a small orifice with effective surface area, T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CF@ .

Conservation of enthalpy leads to velocity, u , at the vent hole. The Bernouilli equation is then written as:

(1)

(airbag) γ γ 1 P ρ = γ γ 1 P e x t ρ v e n t + u 2 2 (vent hole)

Applying the adiabatic conditions:(2)

(airbag) P ρ γ = P e x t ρ v e n t γ (vent hole)

Therefore, the exit velocity is given by: (3)
u 2 = 2 γ γ 1 P ρ ( 1 ( P e x t P ) γ 1 γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGOmaaaakiabg2da9maalaaabaGaaGOmaiabeo7aNbqa aiabeo7aNjabgkHiTiaaigdaaaWaaSaaaeaacaWGqbaabaGaeqyWdi haamaabmaabaGaaGymaiabgkHiTmaabmaabaWaaSaaaeaacaWGqbWa aSbaaSqaaiaadwgacaWG4bGaamiDaaqabaaakeaacaWGqbaaaaGaay jkaiaawMcaamaaCaaaleqabaWaaSaaaeaacqaHZoWzcqGHsislcaaI XaaabaGaeq4SdCgaaaaaaOGaayjkaiaawMcaaaaa@5017@

with ρ = i m ( i ) V the averaged density of the gas and γ = [ i m ( i ) c p ( i ) ] / [ i m ( i ) ] [ i m ( i ) c v ( i ) ] / [ i m ( i ) ] the fraction of massic averages of heat capacities at constant pressure and constant volume.

The mass flow rate is given by:(4)
m ˙ o u t = ρ v e n t A v e n t u = ρ ( P e x t P ) 1 / γ A v e n t u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyBayaaca WaaSbaaSqaaiaad+gacaWG1bGaamiDaaqabaGccqGH9aqpcqaHbpGC daWgaaWcbaGaamODaiaadwgacaWGUbGaamiDaaqabaGccaWGbbWaa0 baaSqaaiaadAhacaWGLbGaamOBaiaadshaaeaaaaGccaWG1bGaeyyp a0JaeqyWdi3aaeWaaeaadaWcaaqaaiaadcfadaWgaaWcbaGaamyzai aadIhacaWG0baabeaaaOqaaiaadcfaaaaacaGLOaGaayzkaaWaaWba aSqabeaacaaIXaGaai4laiabeo7aNbaakiaadgeadaWgaaWcbaGaam ODaiaadwgacaWGUbGaamiDaaqabaGccaWG1baaaa@58D5@
The energy flow rate is given by:(5)
E ˙ o u t = m ˙ E ρ V = ( P e x t P ) 1 / γ A v e n t u E V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyrayaaca WaaSbaaSqaaiaad+gacaWG1bGaamiDaaqabaGccqGH9aqpceWGTbGb aiaadaWcaaqaaiaadweaaeaacqaHbpGCcaWGwbaaaiabg2da9maabm aabaWaaSaaaeaacaWGqbWaaSbaaSqaaiaadwgacaWG4bGaamiDaaqa baaakeaacaWGqbaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGymai aac+cacqaHZoWzaaGccaWGbbWaaSbaaSqaaiaadAhacaWGLbGaamOB aiaadshaaeqaaOGaamyDamaalaaabaGaamyraaqaaiaadAfaaaaaaa@5183@
The total mass flow rate is given by:(6)
d m o u t = ρ ( P e x t P ) 1 / γ A v e n t u
Where,
A v e n t
Vent hole surface.
The vent hole area or scale factor area, A v e n t , can be defined in two ways:
  • a constant area taking into account a discharge coefficient
  • a variable area equal to the area of a specified surface multiplied by a discharge coefficient.

Supersonic Outlet Flow

Vent pressure P v e n t is equal to external pressure P e x t for unshocked flow. For shocked flow, P v e n t is equal to critical pressure P c r i t and u is bounded to critical sound speed:(7)
u 2 < 2 γ + 1 c 2 = 2 * γ γ + 1 P ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGOmaaaakiabgYda8maalaaabaGaaGOmaaqaaiabeo7a NjabgUcaRiaaigdaaaGaaGjbVlaadogadaahaaWcbeqaaiaaikdaaa GccqGH9aqpdaWcaaqaaiaaikdacaGGQaGaeq4SdCgabaGaeq4SdCMa ey4kaSIaaGymaaaacaaMe8+aaSaaaeaacaWGqbaabaGaeqyWdihaaa aa@4BFC@

And,

P c r i t = P ( 2 γ + 1 ) γ γ 1

P v e n t = max ( P c r i t , P e x t )

Outgoing Mass per Gas

The mass flow of gas i is d m ( i ) o u t = V ( i ) V d m o u t , where V ( i ) is the volume occupied by gas i and satisfies:

V ( i ) = n ( i ) n V (from P V ( i ) = n ( i ) R T and P V = [ i n ( i ) ] R T ).

It comes finally(8)
d m ( i ) o u t = n ( i ) i n ( i ) d m o u t