MAT2PT

Bulk Data Entry Defines anisotropic permittivity and damping for dielectric materials

Note: This can be used along with the MATPZO Bulk Data Entry for defining piezoelectric coupling.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MAT2PT MID PMTVXX     PMTVYY   PMTVZZ DAMP  
  FLAG1 FLAG2              

Example

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MAT2PT 17 0.1     1.5   0.01    
  STRSCHG RELATIVE              

Definitions

Field Contents SI Unit Example
MID Unique material identification number.

No default (Integer > 0)

 
PMTVXX Defines the permittivity along the X direction.

No default (Real > 0.0)

 
PMTVYY Defines the permittivity along the Y direction.

Default = PMTVXX (Real > 0.0)

 
PMTVZZ Defines the permittivity along the Z direction.

Default = PMTVXX (Real > 0.0)

 
DAMP Damping term corresponding to the static electrical part.

Default = 1.0 (Real ≥ 0.0 and ≤ 1.0)

 
FLAG1 Flag to indicate the form of PMTVij coefficients.
STRNCHG (Default)
Indicates STRAIN-CHARGE form
STRSCHG
Indicates STRESS-CHARGE form
 
FLAG2 Flag to indicate type of permittivity.
ABSOLUTE (Default)
Absolute permittivity
RELATIVE
Relative permittivity
In this case, vacuum permittivity also needs to be provided by PARAM, VAPMTV.
 

Comments

  1. The material identification number can be the shared with structural materials (MAT1, MAT2, MAT8, MAT9 or MGASK), thermal materials (MAT4, MAT5), or electrical materials (MAT1EC, MAT2EC) but must be unique with respect to other dielectric materials (MAT1PT).
  2. MAT2PT is supported only for solid elements.
  3. The electrical permittivity matrix has the following form:(1)
    ε S = ε x x 0 0 0 ε y y 0 0 0 ε z z = ε 0 ε r x x 0 0 0 ε 0 ε r y y 0 0 0 ε 0 ε r z z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacq aH1oqzdaWgaaWcbaGaam4uaaqabaaakiaawUfacaGLDbaacqGH9aqp daWadaqaauaabeqadmaaaeaacqaH1oqzdaWgaaWcbaGaamiEaiaadI haaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeqyTdu2a aSbaaSqaaiaadMhacaWG5baabeaaaOqaaiaaicdaaeaacaaIWaaaba GaaGimaaqaaiabew7aLnaaBaaaleaacaWG6bGaamOEaaqabaaaaaGc caGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeWadaaabaGaeqyTdu 2aaSbaaSqaaiaaicdaaeqaaOGaeqyTdu2aaSbaaSqaaiaadkhacaWG 4bGaamiEaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacq aH1oqzdaWgaaWcbaGaaGimaaqabaGccqaH1oqzdaWgaaWcbaGaamOC aiaadMhacaWG5baabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabew7aLnaaBaaaleaacaaIWaaabeaakiabew7aLnaaBaaaleaa caWGYbGaamOEaiaadQhaaeqaaaaaaOGaay5waiaaw2faaaaa@6B30@
    Where,
    ε 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaicdaaeqaaaaa@3880@
    Vacuum permittivity
    ε r x x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadkhacaWG4bGaamiEaaqabaaaaa@3AB7@
    Relative permittivity defined by PMTVXX
    ε r y y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadkhacaWG5bGaamyEaaqabaaaaa@3AB9@
    Relative permittivity defined by PMTVYY
    ε r z z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadkhacaWG6bGaamOEaaqabaaaaa@3ABB@
    Relative permittivity defined by PMTVZZ
    When FLAG=STRNCHG, the electrical permittivity matrix is expressed as:(2)
    ε T = ε 0 ε r x x 0 0 0 ε 0 ε r y y 0 0 0 ε 0 ε r z z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacq aH1oqzdaWgaaWcbaGaamivaaqabaaakiaawUfacaGLDbaacqGH9aqp daWadaqaauaabeqadmaaaeaacqaH1oqzdaWgaaWcbaGaaGimaaqaba GccqaH1oqzdaWgaaWcbaGaamOCaiaadIhacaWG4baabeaaaOqaaiaa icdaaeaacaaIWaaabaGaaGimaaqaaiabew7aLnaaBaaaleaacaaIWa aabeaakiabew7aLnaaBaaaleaacaWGYbGaamyEaiaadMhaaeqaaaGc baGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeqyTdu2aaSbaaSqaai aaicdaaeqaaOGaeqyTdu2aaSbaaSqaaiaadkhacaWG6bGaamOEaaqa baaaaaGccaGLBbGaayzxaaaaaa@583B@
    The ε T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacq aH1oqzdaWgaaWcbaGaamivaaqabaaakiaawUfacaGLDbaaaaa@3A9B@ matrix is converted to the ε S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacq aH1oqzdaWgaaWcbaGaam4uaaqabaaakiaawUfacaGLDbaaaaa@3A9A@ matrix by:(3)
    ε S = ε T d c E d T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadofaaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqaaiaadsfa aeqaaOGaeyOeI0IaamizaiaadogadaWgaaWcbaGaamyraaqabaGcca WGKbWaaWbaaSqabeaacaWGubaaaaaa@4211@
    Where,
    c E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGfbaabeaaaaa@37D1@
    Elastic matrix
    d MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DC@
    Piezoelectric coupling matrix defined in MATPZO
  4. For more information, refer to Piezoelectric Analysis in the User Guide.