MATTVE

Bulk Data Entry Defines material properties for temperature-dependent nonlinear viscoelastic materials.

Format A

Williams-Landel-Ferry (Model = WLF):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATTVE MID Model C1 C2 T0

Format B

Arrhenius (Model = ARRHENIU):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATTVE MID ARRHENIU E0 R T0 Tz

Example A

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATTVE 2 WLF 4.0 215.0 10.0

Example B

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATTVE 2 ARRHENIU

Definitions

Field Contents SI Unit Example
MID Material identification number that matches the identification number of the corresponding MAT1 entry.

No default (Integer > 0)

 
Model Viscoelastic material model type.
WLF
Williams-Landel-Ferry model
Arrheniu
Arrhenius model

No default

 
C1 WLF constant C1.

Default = Blank (Real > 0.0)

 
C2 WLF constant C2.

Default = Blank (Real > 0.0)

 
E0 Activation energy for the Arrhenius model.

No default (Real > 0.0)

 
R Universal gas constant.

No default (Real > 0.0)

 
T0 Reference temperature.

No default (Real)

 
Tz Absolute zero temperature.

No default (Real)

 

Comments

  1. Support information for MATTVE is:
    Supported Analysis Types Supported Elements
    Nonlinear static and Nonlinear transient, for both small and large displacement cases CHEXA, CTETRA, CPENTA, and CPYRA
  2. The temperature effect on the viscoelastic material is introduced by the thermo-rheologically simple temperature effects:(1)
    σ= 0 t g f t f s σ ˙ 0 ds MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaey ypa0Zaa8qCaeaacaWGNbWaaeWaaeaacaWGMbWaaeWaaeaacaWG0baa caGLOaGaayzkaaGaeyOeI0IaamOzamaabmaabaGaam4CaaGaayjkai aawMcaaaGaayjkaiaawMcaaiqbeo8aZzaacaWaaSbaaSqaaiaaicda aeqaaOGaamizaiaadohaaSqaaiaaicdaaeaacaWG0baaniabgUIiYd aaaa@4BB0@
    Where,
    f t = 0 t 1 A T s ds MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaamiDaaGaayjkaiaawMcaaiabg2da9maapehabaWaaSaaaeaa caaIXaaabaGaamyqamaabmaabaGaamivamaabmaabaGaam4CaaGaay jkaiaawMcaaaGaayjkaiaawMcaaaaacaWGKbGaam4CaaWcbaGaaGim aaqaaiaadshaa0Gaey4kIipaaaa@46D7@
    The reduced time given by:
    A T s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaabm aabaGaamivamaabmaabaGaam4CaaGaayjkaiaawMcaaaGaayjkaiaa wMcaaaaa@3B9C@
    Shift function
    T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@
    Temperature
  3. Two forms of shift functions are supported:
    • Williams-Landel-Ferry form(2)
      log 10 A = C 1 T T 0 C 2 + T T 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbWaaSbaaSqaaiaaigdacaaIWaaabeaakmaabmaabaGaamyq aaGaayjkaiaawMcaaiabg2da9iabgkHiTmaalaaabaGaam4qamaaBa aaleaacaaIXaaabeaakmaabmaabaGaamivaiabgkHiTiaadsfadaWg aaWcbaGaaGimaaqabaaakiaawIcacaGLPaaaaeaacaWGdbWaaSbaaS qaaiaaikdaaeqaaOGaey4kaSYaaeWaaeaacaWGubGaeyOeI0Iaamiv amaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaaaaaaa@4D45@
    • Arrhenius form(3)
      ln A = E 0 R 1 T T z 1 T 0 T z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6 gadaqadaqaaiaadgeaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaa dweadaWgaaWcbaGaaGimaaqabaaakeaacaWGsbaaamaabmaabaWaaS aaaeaacaaIXaaabaGaamivaiabgkHiTiaadsfadaWgaaWcbaGaamOE aaqabaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaamivamaaBaaale aacaaIWaaabeaakiabgkHiTiaadsfadaWgaaWcbaGaamOEaaqabaaa aaGccaGLOaGaayzkaaaaaa@4A71@