TABLED1

Bulk Data Entry Defines a tabular function for use in generating frequency-dependent and time-dependent dynamic loads.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
TABLED1 TID XAXIS YAXIS FLAT          
  x1 y1 x2 y2 x3 y3 x4 y4  
  x5 y5 etc. etc. etc. etc. etc. etc.  

Example

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
TABLED1 32                
  -3.0 6.9 2.0 5.6 3.0 5.6 ENDT    

Definitions

Field Contents SI Unit Example
TID Table identification number.

No default (Integer > 0)

 
XAXIS Specifies a linear or logarithmic interpolation for the x-axis. 5
LINEAR (Default)
LOG
 
YAXIS Specifies a linear or logarithmic interpolation for the y-axis. 5, 6
LINEAR (Default)
LOG
SMOOTH
 
FLAT
Specifies the handling method for y-values outside the specified range of x-values in the table.
=0 (Default)
If an x-value input is outside the range of x-values specified on the table, the corresponding y-value look up is performed using linear extrapolation from the two start or two end points.
=FLAT or 1
If an x-value input is outside the range of x-values specified on the table, the corresponding y-value is equal to the start or end points, respectively.
 
x#, y# Tabular values.

Any x, y pair may be ignored by placing SKIP in either of the two fields used for that entry.

No default (Real or ENDT)

 

Comments

  1. x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG4bGaamyAaaaa@3AC2@ must be in either ascending or descending order, but not both.
  2. For example, in Figure 1 discontinuities are allowed only between points x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG4bGaaGOmaaaa@3A90@ through x 7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG4bGaaGOmaaaa@3A90@ . Also, if y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG4baaaa@39D4@ is evaluated at a discontinuity, the average value of y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG4baaaa@39D4@ is used. In Figure 1, the value of y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG4baaaa@39D4@ at x = x 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG4bGaeyypa0JaamiEaiaaiodaaaa@3C94@ is y = ( y 3 + y 4 ) / 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG5bGaeyypa0ZaaeWaaeaacaWG5bGaaG4maiabgUcaRiaadMha caaI0aaacaGLOaGaayzkaaGaai4laiaaikdaaaa@422C@ .
  3. At least one continuation entry must be specified.
  4. The end of the table is indicated by the existence of ENDT in either of the two fields following the last entry. An error is detected if any continuations follow the entry containing the end-of-table flag ENDT.
  5. For FLAT=0 (default), TABLED1 uses the algorithm:(1)
    y = y T ( x )
    Where,
    x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG4baaaa@39D4@
    Input to the table
    y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG4baaaa@39D4@
    Is returned
    The table look-up is performed using interpolation within the table and linear extrapolation outside the table using the two starting or end points (Figure 1). The algorithms used for interpolation or extrapolation are:
    X-Axis Y-Axis y T ( x )
    Linear Linear x j x x j x i y i + x x i x j x i y j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada qadaqaaiaadIhadaWgaaWcbaGaamOAaaqabaGccqGHsislcaWG4baa caGLOaGaayzkaaaabaWaaeWaaeaacaWG4bWaaSbaaSqaaiaadQgaae qaaOGaeyOeI0IaamiEamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaa wMcaaaaacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaSaaae aadaqadaqaaiaadIhacqGHsislcaWG4bWaaSbaaSqaaiaadMgaaeqa aaGccaGLOaGaayzkaaaabaWaaeWaaeaacaWG4bWaaSbaaSqaaiaadQ gaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaWGPbaabeaaaOGaayjk aiaawMcaaaaacaWG5bWaaSbaaSqaaiaadQgaaeqaaaaa@53CB@
    Log Linear ln x j / x ln x j / x i y i + ln x / x i ln x j / x i y j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaci GGSbGaaiOBamaabmaabaGaamiEamaaBaaaleaacaWGQbaabeaakiaa c+cacaWG4baacaGLOaGaayzkaaaabaGaciiBaiaac6gadaqadaqaai aadIhadaWgaaWcbaGaamOAaaqabaGccaGGVaGaamiEamaaBaaaleaa caWGPbaabeaaaOGaayjkaiaawMcaaaaacaWG5bWaaSbaaSqaaiaadM gaaeqaaOGaey4kaSYaaSaaaeaaciGGSbGaaiOBamaabmaabaGaamiE aiaac+cacaWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa aabaGaciiBaiaac6gadaqadaqaaiaadIhadaWgaaWcbaGaamOAaaqa baGccaGGVaGaamiEamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawM caaaaacaWG5bWaaSbaaSqaaiaadQgaaeqaaaaa@5A73@
    Linear Log exp x j x x j x i ln y i + x x i x j x i ln y j MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyzaiaacI hacaGGWbWaamWaaeaadaWcaaqaamaabmaabaGaamiEamaaBaaaleaa caWGQbaabeaakiabgkHiTiaadIhaaiaawIcacaGLPaaaaeaadaqada qaaiaadIhadaWgaaWcbaGaamOAaaqabaGccqGHsislcaWG4bWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaiGacYgacaGGUbGaam yEamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaWaaeWaaeaa caWG4bGaeyOeI0IaamiEamaaBaaaleaacaWGPbaabeaaaOGaayjkai aawMcaaaqaamaabmaabaGaamiEamaaBaaaleaacaWGQbaabeaakiab gkHiTiaadIhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaa GaciiBaiaac6gacaWG5bWaaSbaaSqaaiaadQgaaeqaaaGccaGLBbGa ayzxaaaaaa@5C6B@
    Log Log exp ln x j / x ln x j / x i ln y i + ln x / x i ln x j / x i ln y j MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyzaiaacI hacaGGWbWaamWaaeaadaWcaaqaaiGacYgacaGGUbWaaeWaaeaacaWG 4bWaaSbaaSqaaiaadQgaaeqaaOGaai4laiaadIhaaiaawIcacaGLPa aaaeaaciGGSbGaaiOBamaabmaabaGaamiEamaaBaaaleaacaWGQbaa beaakiaac+cacaWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaay zkaaaaaiGacYgacaGGUbGaamyEamaaBaaaleaacaWGPbaabeaakiab gUcaRmaalaaabaGaciiBaiaac6gadaqadaqaaiaadIhacaGGVaGaam iEamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiGacYga caGGUbWaaeWaaeaacaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaai4lai aadIhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaaGaciiB aiaac6gacaWG5bWaaSbaaSqaaiaadQgaaeqaaaGccaGLBbGaayzxaa aaaa@6313@
    Linear Smooth y i + y j y i x x i 3 x j x i 3 10 15 x x i x j x i + 6 x x i 2 x j x i 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiabgUcaRmaabmaabaGaamyEamaaBaaaleaa caWGQbaabeaakiabgkHiTiaadMhadaWgaaWcbaGaamyAaaqabaaaki aawIcacaGLPaaadaWcaaqaamaabmaabaGaamiEaiabgkHiTiaadIha daWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaai aaiodaaaaakeaadaqadaqaaiaadIhadaWgaaWcbaGaamOAaaqabaGc cqGHsislcaWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacaaIZaaaaaaakmaabmaabaGaaGymaiaaicdacqGH sislcaaIXaGaaGynamaalaaabaWaaeWaaeaacaWG4bGaeyOeI0Iaam iEamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaamaabmaa baGaamiEamaaBaaaleaacaWGQbaabeaakiabgkHiTiaadIhadaWgaa WcbaGaamyAaaqabaaakiaawIcacaGLPaaaaaGaey4kaSIaaGOnamaa laaabaWaaeWaaeaacaWG4bGaeyOeI0IaamiEamaaBaaaleaacaWGPb aabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaamaa bmaabaGaamiEamaaBaaaleaacaWGQbaabeaakiabgkHiTiaadIhada WgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaaaaaGccaGLOaGaayzkaaaaaa@6F9F@

    Where, x j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGQbaabeaaaaa@380B@ and y j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGQbaabeaaaaa@380C@ follow x i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGPbaabeaaaaa@380A@ and y i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaaaaa@380B@ .

    No warning messages are issued if table data is input incorrectly.


    Figure 1. Example of Table Extrapolation and Discontinuity

    For FLAT=1, the same algorithm as FLAT=0 is used, except that values outside the range are not extrapolated. The corresponding start or end point y-values are used for all y-values outside the range.

  6. SMOOTH option is only available for Explicit Dynamic Analysis (ANALYSIS=NLEXPL).
  7. Linear extrapolation is not used for Fourier transform methods. The function is zero outside the range of the table.
  8. For frequency-dependent loads, x# is measured in cycles per unit time.
  9. Tabular values on an axis if X-Axis or Y-Axis=LOG must be positive. A fatal message will be issued if an axis has a tabular value ≤ 0.
  10. This card is represented as a load collector in HyperMesh.