Allows for the study of fatigue performance of spot welds in structures.
Currently, only stress-life (SN) based spot weld fatigue analysis is supported. The
spot weld location is defined by three attributes, sheet 1, sheet 2, and the nugget.
Figure 1. Spot Weld Fatigue
Implementation
Fatigue analysis for spot welds involves examining the weld at three distinct
locations, the sheets and nugget, and is based on a paper by Rupp et al. The
cross-sectional forces and moments at the nugget location are determined and used to
calculate corresponding stresses at the sheets and the nugget. These stresses are
then used to calculate Fatigue Damage using Rainflow counting and the SN
approach.
The following sections illustrate how stresses and subsequently damage are calculated
at each of the three locations.
Sheet Location (1 or 2)
Figure 2. Forces and Moments of Interest at Sheet Locations
Radial stresses are calculated at the sheet by considering forces and moments at the
nugget. The radial stresses
σ
(
θ
)
are calculated as a function of
θ
for each point in the load-time history as:
(1)
σ ( θ ) = −
σ
max
(
f
y
) cos θ −
σ
max
(
f
z
) sin θ + σ (
f
x
) +
σ
max
(
m
y
) sin θ −
σ
max
(
m
z
) cos θ
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaai
ikaiabeI7aXjaacMcacqGH9aqpcqGHsislcqaHdpWCdaWgaaWcbaGa
ciyBaiaacggacaGG4baabeaakiaacIcacaWGMbWaaSbaaSqaaiaadM
haaeqaaOGaaiykaiGacogacaGGVbGaai4CaiabeI7aXjabgkHiTiab
eo8aZnaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaOGaaiikaiaadA
gadaWgaaWcbaGaamOEaaqabaGccaGGPaGaci4CaiaacMgacaGGUbGa
eqiUdeNaey4kaSIaeq4WdmNaaiikaiaadAgadaWgaaWcbaGaamiEaa
qabaGccaGGPaGaey4kaSIaeq4Wdm3aaSbaaSqaaiGac2gacaGGHbGa
aiiEaaqabaGccaGGOaGaamyBamaaBaaaleaacaWG5baabeaakiaacM
caciGGZbGaaiyAaiaac6gacqaH4oqCcqGHsislcqaHdpWCdaWgaaWc
baGaciyBaiaacggacaGG4baabeaakiaacIcacaWGTbWaaSbaaSqaai
aadQhaaeqaaOGaaiykaiGacogacaGGVbGaai4CaiabeI7aXbaa@78E3@
Where,
(2)
σ
max
(
f
y
)
=
f
y
π
D
T
×
C
f
y
z
×
D
d
e
f
y
z
×
T
t
e
f
y
z
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS
baaSqaaiGac2gacaGGHbGaaiiEaaqabaGccaGGOaGaamOzamaaBaaa
leaacaWG5baabeaakiaacMcacqGH9aqpdaWcaaqaaiaadAgadaWgaa
WcbaGaamyEaaqabaaakeaacqaHapaCcaWGebGaamivaaaacaaMc8Ua
ey41aqRaaGPaVlaadoeadaWgaaWcbaGaamOzaiaadMhacaWG6baabe
aakiaaykW7cqGHxdaTcaaMc8UaamiramaaCaaaleqabaGaamizaiaa
dwgacaWGMbGaamyEaiaadQhaaaGccaaMc8Uaey41aqRaaGPaVlaads
fadaahaaWcbeqaaiaadshacaWGLbGaamOzaiaadMhacaWG6baaaaaa @63C6@
(3)
σ
max
(
f
z
)
=
f
z
π
D
T
×
C
f
y
z
×
D
d
e
f
y
z
×
T
t
e
f
y
z
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS
baaSqaaiGac2gacaGGHbGaaiiEaaqabaGccaGGOaGaamOzamaaBaaa
leaacaWG6baabeaakiaacMcacqGH9aqpdaWcaaqaaiaadAgadaWgaa
WcbaGaamOEaaqabaaakeaacqaHapaCcaWGebGaamivaaaacaaMc8Ua
ey41aqRaaGPaVlaadoeadaWgaaWcbaGaamOzaiaadMhacaWG6baabe
aakiaaykW7cqGHxdaTcaaMc8UaamiramaaCaaaleqabaGaamizaiaa
dwgacaWGMbGaamyEaiaadQhaaaGccaaMc8Uaey41aqRaaGPaVlaads
fadaahaaWcbeqaaiaadshacaWGLbGaamOzaiaadMhacaWG6baaaaaa @63C8@
(4)
σ
(
f
x
)
=
1.744
f
x
T
2
×
C
f
x
×
D
d
e
f
x
×
T
t
e
f
x
for
f
x
>
0.0
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaai
ikaiaadAgadaWgaaWcbaGaamiEaaqabaGccaGGPaGaeyypa0ZaaeWa
aeaadaWcaaqaaiaaigdacaGGUaGaaG4naiaaisdacaaI0aGaamOzam
aaBaaaleaacaWG4baabeaaaOqaaiaadsfadaahaaWcbeqaaiaaikda
aaaaaaGccaGLOaGaayzkaaGaaGPaVlabgEna0kaaykW7caWGdbWaaS
baaSqaaiaadAgacaWG4baabeaakiaaykW7cqGHxdaTcaaMc8Uaamir
amaaCaaaleqabaGaamizaiaadwgacaWGMbGaamiEaaaakiaaykW7cq
GHxdaTcaaMc8UaamivamaaCaaaleqabaGaamiDaiaadwgacaWGMbGa
amiEaaaakiaaywW7caqGMbGaae4BaiaabkhacaaMf8UaamOzamaaBa
aaleaacaWG4baabeaakiaaysW7cqGH+aGpcaaMe8UaaGimaiaac6ca
caaIWaaaaa@6FB5@
(5)
f
x
=
0.0
for
f
x
≥
0.0
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa
aaaaaaaaWdbiaadAgadaWgaaWcbaGaamiEaaqabaaak8aacaGLOaGa
ayzkaaWdbiaabccacqGH9aqpcaqGGaGaaGimaiaac6cacaaIWaGaaG
zbVlaabAgacaqGVbGaaeOCaiaaywW7caWGMbWaaSbaaSqaaiaadIha
aeqaaOGaaGjbVlabgwMiZkaaysW7caaIWaGaaiOlaiaaicdaaaa@4D5B@
(6)
σ
max
(
m
y
)
=
1.872
m
y
D
T
2
×
C
m
y
z
×
D
d
e
m
y
z
×
T
t
e
m
y
z
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS
baaSqaaiGac2gacaGGHbGaaiiEaaqabaGccaGGOaGaamyBamaaBaaa
leaacaWG5baabeaakiaacMcacqGH9aqpdaqadaqaamaalaaabaGaaG
ymaiaac6cacaaI4aGaaG4naiaaikdacaWGTbWaaSbaaSqaaiaadMha
aeqaaaGcbaGaamiraiaadsfadaahaaWcbeqaaiaaikdaaaaaaaGcca
GLOaGaayzkaaGaaGPaVlabgEna0kaaykW7caWGdbWaaSbaaSqaaiaa
d2gacaWG5bGaamOEaaqabaGccaaMc8Uaey41aqRaaGPaVlaadseada
ahaaWcbeqaaiaadsgacaWGLbGaamyBaiaadMhacaWG6baaaOGaaGPa
VlabgEna0kaaykW7caWGubWaaWbaaSqabeaacaWG0bGaamyzaiaad2
gacaWG5bGaamOEaaaaaaa@6854@
(7)
σ
max
(
m
z
)
=
1.872
m
z
D
T
2
×
C
m
y
z
×
D
d
e
m
y
z
×
T
t
e
m
y
z
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS
baaSqaaiGac2gacaGGHbGaaiiEaaqabaGccaGGOaGaamyBamaaBaaa
leaacaWG6baabeaakiaacMcacqGH9aqpdaqadaqaamaalaaabaGaaG
ymaiaac6cacaaI4aGaaG4naiaaikdacaWGTbWaaSbaaSqaaiaadQha
aeqaaaGcbaGaamiraiaadsfadaahaaWcbeqaaiaaikdaaaaaaaGcca
GLOaGaayzkaaGaaGPaVlabgEna0kaaykW7caWGdbWaaSbaaSqaaiaa
d2gacaWG5bGaamOEaaqabaGccaaMc8Uaey41aqRaaGPaVlaadseada
ahaaWcbeqaaiaadsgacaWGLbGaamyBaiaadMhacaWG6baaaOGaaGPa
VlabgEna0kaaykW7caWGubWaaWbaaSqabeaacaWG0bGaamyzaiaad2
gacaWG5bGaamOEaaaaaaa@6856@
D
Diameter of the weld element
T
Thickness of the sheet under consideration for damage calculation
C
f
y
z
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa
aaleaacaWGMbGaamyEaiaadQhaaeqaaaaa@39D0@
,
C
m
y
z
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa
aaleaacaWGTbGaamyEaiaadQhaaeqaaaaa@39D7@
,
C
f
x
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa
aaleaacaWGMbGaamiEaaqabaaaaa@38D0@
Scale factors
d
e
f
y
z
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaWcbaGaamizaiaadw
gacaWGMbGaamyEaiaadQhaaaa@3AB0@
,
d
e
m
y
z
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaWcbaGaamizaiaadw
gacaWGTbGaamyEaiaadQhaaaa@3AB7@
,
d
e
f
x
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaWcbaGaamizaiaadw
gacaWGMbGaamiEaaaa@39B0@
Diameter exponents
t
e
f
y
z
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaWcbaGaamiDaiaadw
gacaWGMbGaamyEaiaadQhaaaa@3AC0@
,
t
e
m
y
z
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaWcbaGaamiDaiaadw
gacaWGTbGaamyEaiaadQhaaaa@3AC7@
,
t
e
f
x
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaWcbaGaamiDaiaadw
gacaWGMbGaamiEaaaa@39C0@
Thickness exponents
To be equivalent to the Rupp method:
C
f
y
z
=
1
,
d
e
f
y
z
=
0
,
t
e
f
y
z
=
0
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa
aaleaacaWGMbGaamyEaiaadQhaaeqaaOGaaGPaVlabg2da9iaaykW7
caaIXaGaaiilaiaaykW7caaMf8UaamizaiaadwgacaWGMbGaamyEai
aadQhacaaMc8Uaeyypa0JaaGPaVlaaicdacaGGSaGaaGzbVlaadsha
caWGLbGaamOzaiaadMhacaWG6bGaaGPaVlabg2da9iaaykW7caaIWa
aaaa@57E9@
C
m
y
z
=
0.6
,
d
e
m
y
z
=
0
,
t
e
m
y
z
=
0.5
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa
aaleaacaWGTbGaamyEaiaadQhaaeqaaOGaaGPaVlabg2da9iaaykW7
caaIWaGaaiOlaiaaiAdacaGGSaGaaGPaVlaaywW7caWGKbGaamyzai
aad2gacaWG5bGaamOEaiaaykW7cqGH9aqpcaaMc8UaaGimaiaacYca
caaMf8UaamiDaiaadwgacaWGTbGaamyEaiaadQhacaaMc8Uaeyypa0
JaaGPaVlaaicdacaGGUaGaaGynaaaa@5AE0@
C
f x
= 0.6 , d e f x = 0 , t e f x = 0.5
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa
aaleaacaWGMbGaamiEaaqabaGccaaMc8Uaeyypa0JaaGPaVlaaicda
caGGUaGaaGOnaiaacYcacaaMc8UaaGzbVlaadsgacaWGLbGaamOzai
aadIhacaaMc8Uaeyypa0JaaGPaVlaaicdacaGGSaGaaGzbVlaadsha
caWGLbGaamOzaiaadIhacaaMc8Uaeyypa0JaaGPaVlaaicdacaGGUa
GaaGynaaaa@57CB@
The equivalent radial stresses are calculated at intervals of
θ
(Default =18 degrees). The value of
θ
can be modified by varying the Number of angles field in the spot weld solution
settings. Subsequently, Rainflow cycle counting is used to calculate fatigue life
and damage at each angle (
θ
). The worst damage value is then picked for output. A
similar approach is conducted for the other sheet.
Nugget Location
Figure 3. Forces and Moments of Interest at Nugget Cross-Section
The absolute maximum principal stresses are calculated using the shear stress and
bending stress of the beam element as a function of
θ
for each point in the load-time history as:
(8)
τ
(
θ
)
=
τ
max
(
f
y
)
sin
θ
+
τ
max
(
f
z
)
cos
θ
(9)
σ ( θ ) = σ (
f
x
) +
σ
max
(
m
y
) sin θ −
σ
max
(
m
z
) cos θ
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaai
ikaiabeI7aXjaacMcacqGH9aqpcqaHdpWCcaGGOaGaamOzamaaBaaa
leaacaWG4baabeaakiaacMcacqGHRaWkcqaHdpWCdaWgaaWcbaGaci
yBaiaacggacaGG4baabeaakiaacIcacaWGTbWaaSbaaSqaaiaadMha
aeqaaOGaaiykaiGacohacaGGPbGaaiOBaiabeI7aXjabgkHiTiabeo
8aZnaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaOGaaiikaiaad2ga
daWgaaWcbaGaamOEaaqabaGccaGGPaGaci4yaiaac+gacaGGZbGaeq
iUdehaaa@5C85@
Where,
(10)
τ
max
(
f
y
)
=
16
f
y
3
π
D
2
(11)
τ
max
(
f
z
)
=
16
f
z
3
π
D
2
(12)
σ
f
x
=
4
f
x
π
D
2
for
f
x
>
0.0
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aae
WaaeaacaWGMbWaaSbaaSqaaiaadIhaaeqaaaGccaGLOaGaayzkaaGa
aGjbVlabg2da9iaaysW7daWcaaqaaiaaisdacaWGMbWaaSbaaSqaai
aadIhaaeqaaaGcbaGaeqiWdaNaamiramaaCaaaleqabaGaaGOmaaaa
aaGccaaMf8UaaeOzaiaab+gacaqGYbGaaGzbVlaadAgadaWgaaWcba
GaamiEaaqabaGccaaMc8UaeyOpa4JaaGPaVlaaicdacaGGUaGaaGim
aaaa@5430@
(13)
σ
f
x
=
0.0
for
f
x
≤
0.0
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aae
WaaeaacaWGMbWaaSbaaSqaaiaadIhaaeqaaaGccaGLOaGaayzkaaGa
aGjbVlabg2da9iaaysW7caaIWaGaaiOlaiaaicdacaaMf8UaaeOzai
aab+gacaqGYbGaaGzbVlaadAgadaWgaaWcbaGaamiEaaqabaGccaaM
c8UaeyizImQaaGPaVlaaicdacaGGUaGaaGimaaaa@509E@
(14)
σ
max
(
m
y
)
=
32
m
y
π
D
3
(15)
σ
max
(
m
z
)
=
32
m
z
π
D
3
D
Diameter of the weld element
T
Thickness of the sheet under consideration for damage calculation
The equivalent maximum absolute principal stresses are calculated for each
θ
from
τ
(
θ
)
and
σ
(
θ
)
. These stresses are used for subsequent fatigue
analysis. Rainflow cycle counting is used to calculate fatigue life and damage at
each angle (
θ
). The worst damage value is then picked for output.