Internal Stress Calculation

Global Formulation

The time integration of stresses has been stated earlier (Stress Rates) as:(1)
σ i j ( t + Δ t ) = σ i j ( t ) + σ ˙ i j Δ t
The stress rate is comprised of two components:(2)
σ ˙ i j = σ ˙ i j v + σ ˙ i j r
Where,
σ ˙ i j r
Stress rate due to the rigid body rotational velocity
σ ˙ i j v
Jaumann objective stress tensor derivative
The correction for stress rotation from time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG0baaaa@39D0@ to time t + Δ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG0bGaey4kaSIaeuiLdqKaamiDaaaa@3D11@ is given by 1:(3)
σ ˙ i j r = σ i k Ω k j + σ j k Ω k i

Where, Ω is the rigid body rotational velocity tensor (Kinematic Description, 式 14).

The Jaumann objective stress tensor derivative σ ˙ i j v is the corrected true stress rate tensor without rotational effects. The constitutive law is directly applied to the Jaumann stress rate tensor.

Deviatoric stresses and pressure (Stresses in Solids) are computed separately and related by:(4)
σ i j = s i j p δ i j
Where,
s i j
Deviatoric stress tensor
p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36EB@
Pressure or mean stress - defined as positive in compression
δ i j
Substitution tensor or unit matrix

Co-rotational Formulation

A co-rotational formulation for bricks is a formulation where rigid body rotations are directly computed from the element's node positions. Objective stress and strain tensors are computed in the local (co-rotational) frame. Internal forces are computed in the local frame and then rotated to the global system.

So, when co-rotational formulation is used, Deviatoric Stress Calculation, 式 2 σ ˙ i j = σ ˙ i j v + σ ˙ i j r reduces to:(5)
σ ˙ i j = σ ˙ i j v
Where,
σ ˙ i j v
Jaumann objective stress tensor derivative expressed in the co-rotational frame
図 1 orthogonalization, when one of the r, s, t directions is orthogonal to the two other directions.


図 1.

When large rotations occur, this formulation is more accurate than the global formulation, for which the stress rotation due to rigid body rotational velocity is computed in an incremental way.

Co-rotational formulation avoids this kind of problem. Consider this test:


図 2.
The increment of the rigid body rotation vector during time step Δ t is:(6)
Δ Ω = Δ t / 2 [ ( v x / y v y / x ) = 0 ( v x / z v z / x ) = v x / z ( v y / x v x / y ) = 0

So, Δ Ω y = α Δ T / 2

Where, α = v / h equals the imposed velocity on the top of the brick divided by the height of the brick (constant value).

Due to first order approximation, the increment of stress σ x x due to the rigid body motion is:(7)
Δ σ x x r = Δ Ω y ( τ x z + τ z x ) = 2 Δ Ω y τ x z = α Δ T τ x z
Increment of stress σ z z due to the rigid body motion:(8)
Δ σ z z r = Δ Ω y ( τ x z + τ z x ) = 2 Δ Ω y τ x z = α Δ T τ x z
Increment of shear stress τ x z due to the rigid body motion:(9)
Δ τ x z r = Δ Ω y ( σ z z σ x x ) = 2 Δ Ω y σ z z = α Δ T σ z z
Increment of shear strain:(10)
Δ γ x z = Δ T ( v x / z + v z / x ) = α Δ T
Increment of stress σ z z due to strain:(11)
Δ σ z z v = 0
and increment of shear stress due to strain is:(12)
Δ τ x z v = G Δ γ x z = G α Δ T

Where, G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake GabaaVqiaadEeaaaa@3A72@ is the shear modulus (material is linear elastic).

From 式 8 to 式 12, you have:(13)
[ Δ τ x z = α Δ T σ z z + G α Δ T Δ σ z z = α Δ τ x z ]
System 式 13 leads to:(14)
Δ τ x z / Δ T 2 = α 2 τ x z
So, shear stress is sinusoidal and is not strictly increasing.


図 3.

So, it is recommended to use co-rotational formulation, especially for visco-elastic materials such as foams, even if this formulation is more time consuming than the global one.

Co-rotational Formulation and Orthotropic Material

When orthotropic material and global formulation are used, the fiber is attached to the first direction of the isoparametric frame and the fiber rotates a different way depending on the element numbering.


図 4.


図 5.
On the other hand, when the co-rotational formulation is used, the orthotropic frame keeps the same orientation with respect to the local (co-rotating) frame, and is therefore also co-rotating.


図 6.
1 Wilkins M., 「Calculation of elastic plastic flow」 LLNL, University of California UCRL-7322, 1981.