SS-V:6010 简支薄方板 - 周期性强迫振动响应

测试编号 VD02查看受周期性强迫振动的简支方板的瞬态响应。

定义

简支 10×10×0.05 m 的简支薄方板在均匀压力 P=100 Pa 的作用下,随时间呈如下函数变化。(1)
P=100*(sin(ωt)sin(3ωt)) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakeaacaWGqbGaeyypa0JaaGymaiaaicdacaaIWaGaaiOkamaabmaabaGaci4CaiaacMgacaGGUbWaaeWaaeaacqaHjpWDcqGHxiIkcaWG0baacaGLOaGaayzkaaGaeyOeI0Iaci4CaiaacMgacaGGUbWaaeWaaeaacaaIZaGaeqyYdCNaey4fIOIaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@50CE@
其中,
ω=2PIf MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakeaacqaHjpWDcqGH9aqpcaaIYaGaey4fIOIaamiuaiaadMeacqGHxiIkcaWGMbaaaa@40B2@
f=1.2Hz MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakeaacaWGMbGaeyypa0JaaGymaiaac6cacaaIYaGaamisaiaadQhaaaa@3E9D@
激励频率。

采用十六 (16) 个模式来准确估算动力学解,所有模式均假定有 2% 的模态阻尼。

材料属性为:
属性
弹性模量
2.e+11 Pa
泊松比
0.3
密度
8.e+3 kg/m3

结果

方板被模拟成一个 3D 实体。为了施加铰支座,在方板的平面中间处创建了载荷线 (Figure 1)。为了根据上述公式模拟周期性载荷变化,向方板施加了两个压力载荷。
  • P=100sin(ωt) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakeaacaWGqbGaeyypa0JaaGymaiaaicdacaaIWaGaey4fIOIaci4CaiaacMgacaGGUbWaaeWaaeaacqaHjpWDcqGHxiIkcaWG0baacaGLOaGaayzkaaaaaa@45C6@ 施加于方板的顶面,以及
  • P=100sin(3ωt) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakeaacaWGqbGaeyypa0JaeyOeI0IaaGymaiaaicdacaaIWaGaey4fIOIaci4CaiaacMgacaGGUbWaaeWaaeaacaaIZaGaeqyYdCNaey4fIOIaamiDaaGaayjkaiaawMcaaaaa@4770@ 施加于方板的底面


Figure 1.
下表包含动力学解的稳定状态部分的典型值 (Figure 2)。
偏移 Y,mm 曲面应力,MPa  
-2.886 2.062 SimSolid,实体模型
-2.863 2.018 参考,薄方板


Figure 2.
1
Test 13P from NAFEMS Publication R0016, “Selected Benchmarks for Forced Vibration”(强迫振动的选定基准) J. Maguire, D.J.Dawswell, L. Gould