Feko is a comprehensive electromagnetic solver with multiple solution methods that is used for electromagnetic field analyses
involving 3D objects of arbitrary shapes.

3D views are used to display and interact with the model. You can zoom, rotate and pan around a 3D model using the keyboard,
mouse or a combination of both. You can use a 3D mouse, specify a view or select specific parts of a model. Multiple 3D
views are supported.

Define field or current data using either far field data, near field data, spherical mode data or PCB current data. Use
the field/current definition when defining an equivalent source or a receiving antenna.

Define a medium with specific material properties, import a predefined medium from the media library or add a medium from
your model to the media library.

Defined media can be applied to the model in various ways. Some media settings are applied to regions, others on faces
and wires. The rules for defining media varies between the different solution methods.

Use a periodic boundary condition (PBC) to analyse infinite periodic structures. A typical application of PBC is to
analyse frequency selective surface (FSS) structures.

Create an arbitrary finite antenna array that consists of an array of contributing elements, either with direct feeds for
each element or via indirect coupling, and solve with the efficient domain Green's function method (DGFM).

Use the windscreen tools to define a curved reference surface constrained by a cloud of points, normals and optional U′V′ parameters. The constrained surface is then used as a reference to create a work surface where windscreen layers and curved
parameterised windscreen antenna elements can be created.

Many electromagnetic compatibility and interference problems involve cables that either radiate, are irradiated or cause
coupling into other cables, devices or antennas. Use the cable modelling tool and solver to analyse the coupling and radiation.

For a frequency domain result, the electromagnetic fields and currents are calculated at a single frequency or frequency
range. When the finite difference time domain (FDTD) solver is used, the frequency must be specified to convert the native time domain results to the frequency domain.

The excitation of an antenna is normally specified as a complex voltage, but it may be useful to specify the total radiated
or source power instead. The result is then scaled to yield the desired source power level.

A port is a mathematical representation of where energy can enter (source) or leave a model (sink). Use a port
to add sources and discrete loads to a model.

Perform multiple solutions for a single model using multiple configurations. Multiple configurations remove the requirement
to create multiple models with different solution requests.

Use an infinite plane or half-space to model a ground plane efficiently. The number of triangles in the model is reduced
as the ground plane is not discretised into triangles.

A CADFEKO.cfm file can be imported into EDITFEKO to make use of more advanced features available in EDITFEKO and to directly edit the .pre file for more flexible solution configurations.

During the design process, the development of a model can introduce a range of issues that can lead to a non-simulation-ready
model. Use the validation toolset to verify that the model is simulation-ready or to search, detect and flag discrepancies.

The default solver used in Feko is the method of moments (MoM) - surface equivalence principle (SEP). A solver is specified per model, per face or per region, and depends on the solver in question.

Volume equivalence principle (VEP) is an extension to the method of moments (MoM) for the modelling of dielectric bodies. The regions of such bodies can be arbitrarily shaped and are discretised into
tetrahedra.

At very low frequencies (frequency range where the largest dimension of the model is much smaller than a wavelength), the
method of moments (MoM) solution can become numerically unstable and singular.

In the solution of large electromagnetic problems solved using the method of moments (MoM), sometimes a considerable part of the geometry remains unchanged, while only a small part changes. The unchanged part
(static interaction matrix) can be saved to a .ngf file and reused to reduce CPU time.

Model a slot or aperture in an infinite plane using the planar Green's function aperture. The aperture is discretised
instead of the surrounding ground plane, reducing the number of triangles and run time.

The adaptive cross-approximation (ACA) is a fast method, similar to multilevel fast multipole method (MLFMM). The method improves the solution of certain complex method of moments (MoM) problems using less memory and run-time.

The physical optics (PO) solver is an asymptotic high-frequency numerical solver based on currents. Use the method in instances where electrically
very large metallic structures are modelled.

The ray launching geometrical optics (RL-GO) solver is a ray-based solver that models objects based on optical propagation, reflection and refraction theory.

The uniform theory of diffraction (UTD) is an asymptotic high-frequency numerical solver. The method is typically used for electrically extremely large PEC
structures.

The dielectric surface impedance approximation is a solution method that can be applied to homogeneous, lossy dielectric regions. Use the solution method to compute
SAR values for a homogeneous phantom.

CADFEKO has a collection of tools that allows you to quickly validate the model, for example, perform calculations using
a calculator, measure distances, measure angles and export images.

EDITFEKO is used to construct advanced models (both the geometry and solution requirements) using a high-level scripting language
which includes loops and conditional statements.

One of the key features in Feko is that it includes a broad set of unique and hybridised solution methods. Effective use of Feko features requires an understanding of the available methods.

Feko offers state-of-the-art optimisation engines based on generic algorithm (GA) and other methods, which can be used
to automatically optimise the design and determine the optimum solution.

Feko writes all the results to an ASCII output file .out as well as a binary output file .bof for usage by POSTFEKO. Use the .out file to obtain additional information about the solution.

CADFEKO and POSTFEKO have a powerful, fast, lightweight scripting language integrated into the application allowing you to create
models, get hold of simulation results and model configuration information as well as manipulation of data and automate
repetitive tasks.

The default solver used in Feko is the method of moments (MoM) - surface equivalence principle (SEP). A solver is specified per model, per face or per region, and depends on the solver in question.

Model a slot or aperture in an infinite plane using the planar Green's function aperture. The aperture is discretised
instead of the surrounding ground plane, reducing the number of triangles and run time.

Model a slot or aperture in an infinite plane using the planar Green's function
aperture. The aperture is discretised instead of the surrounding ground plane, reducing the
number of triangles and run time.

Create the geometry to model the aperture or slot in the infinite PEC plane.
For example, create a rectangle to represent the aperture.

Select the “aperture” in the 3D view or in the
model tree.

In the details tree, from the right-click context menu, select Properties.

On the Modify Face dialog, click the
Solution tab.

Under Solve with special solution method, from the
drop-down list, select Planar Green's function
aperture.

Click OK to model the aperture as a planar Green's
function aperture and to close the dialog.