Loading [MathJax]/jax/output/CommonHTML/jax.js

/MAT/LAW57 (BARLAT3)

Block Format Keyword This law describes plasticity hardening by a user-defined function and can be used only with shell elements.

This is an elasto-plastic orthotropic law for modeling anisotropic materials in forming processes especially aluminum alloys. This material law must be used with property set type /PROP/TYPE9 (SH_ORTH) or /PROP/TYPE10 (SH_COMP).

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW57/mat_ID/unit_ID or /MAT/BARLAT3/mat_ID/unit_ID
mat_title
ρi                
E ν            
fct_IDE   Einf CE        
r00 r45 r90 Chard m
εmaxp εt εm Fcut Fsmooth  
Repeat the next line for each plasticity function
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
fct_IDi   Fscalei ˙εi        

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρi Initial density.

(Real)

[kgm3]
E Young's modulus.

(Real)

[Pa]
ν Poisson's ratio.

(Real)

 
fct_IDE Function identifier for the scale factor of Young's modulus, when Young's modulus is function of the plastic strain. 11

Default = 0: in this case the evolution of Young's modulus depends on Einf and CE.

(Integer)

 
Einf Saturated Young's modulus for infinitive plastic strain.

(Real)

 
CE Parameter for Young's modulus evolution.

(Real)

 
r00 Lankford parameter 0 degree.

Default = 1.0 (Real)

 
r45 Lankford parameter 45 degrees.

Default = 1.0 (Real)

 
r90 Lankford parameter 90 degrees.

Default = 1.0 (Real)

 
Chard Hardening coefficient.
= 0
Hardening is full isotropic model.
= 1
Hardening uses the kinematic Prager-Ziegler model.
= between 0 and 1
Hardening is interpolated between the two models.

(Real)

 
m Barlat parameter.
= 6.0 (Default)
For Body Centered Cubic (BCC) material.
= 8.0
For Face Centered Cubic (FCC) material.

(Real)

 
εmaxp Failure plastic strain.

Default = 1.0 x 1030 (Real)

 
εt Tensile failure strain at which stress starts to reduce.

Default = 1.0 x 1030 (Real)

 
εm Maximum tensile failure damage strain at which the stress in element is set to zero.

Default = 2.0 x 1030 (Real)

 
Fcut Cutoff frequency for the strain rate filtering.

Default = 10000 Hz (Real)

[Hz]
Fsmooth Smooth strain rate option flag.
= 0 (Default)
No strain rate smoothing.
= 1
Strain rate smoothing active.
(Integer)
 
fct_IDi Plasticity curves ith function identifier.

(Integer)

 
Fscalei Scale factor for ith function.

Default set to 1.0 (Real)

 
˙εi Strain rate for ith function.

(Real)

[1s]

Example (Steel)

Comments

  1. The anisotopic yield criteria F for plane stress is defined by:(1)
    F=a|K1+K2|m+a|K1K2|m+c|2K2|m2σym=0

    Where,

    σy is the yield stress

    K1=σxx+hσyy2 and K2=(σxxhσyy2)2+p2σ2xy

  2. Angles for Lankford parameters are defined with respect to orthotropic direction 1. The material constants a, c, h, and p are obtained from the three Lankford parameters:(2)
    a=22r001+r00r901+r90c=2ah=r001+r001+r90r90
    Material constant p is calculated by solving:(3)
    2mσym(Fσxx+Fσyy)σ451r45=0
  3. If the last point of the first (static) function equals 0 in stress, the default value of εmaxp is set to the corresponding value of εp .
  4. If εp (plastic strain) reaches εmaxp , in one integration point, the corresponding shell element is deleted.
  5. If the largest principal strain ε1>εt , the stress is reduced using the following relation:(4)
    σ=σ(εmε1εmεt)
  6. If ε1>εm , the stress is reduced to 0 (but the element is not deleted).
  7. The maximum number of curves is 10.
  8. If ˙ε˙εn , the yield is interpolated between fn and fn-1.
  9. If ˙ε˙ε1 , function f1 is used.
  10. Above ˙εmax , yield is extrapolated.

    law57
    Figure 1.
  11. The evolution of Young's modulus:
    • If fct_IDE > 0, the curve defines a scale factor for Young's modulus evolution with equivalent plastic strain, which means the Young's modulus is scaled by the function f(ˉεp) :(5)
      E(t)=Ef(ˉεp)

      The initial value of the scale factor should be equal to 1 and it decreases.

    • If fct_IDE = 0, the Young's modulus is calculated as:(6)
      E(t)=E(EEinf)[1exp(CEˉεp)]

      Where, E and Einf are respectively the initial and asymptotic value of Young's modulus, and ˉεp is the accumulated equivalent plastic strain.

      Note: If fct_IDE = 0 and CE = 0, Young's modulus, E is kept constant.
  12. The parameters Fsmooth and Fcut allows you to enable a strain-rate filtering. Three cases can be set:
    • If Fsmooth = 0 and Fcut = 0.0, the strain-rate filtering is turned off.
    • If Fsmooth = 1 and Fcut = 0.0, the strain-rate filtering uses a default cutoff frequency of 10 kHz.
    • If Fcut ≠ 0, Fsmooth is automatically set to 1 and the strain-rate filtering uses the cutoff frequency given by you.