/MAT/LAW53 (TSAI_TAB)

Block Format Keyword Describes the law that is a uni-directional orthotropic elasto-plastic law and is only used with solid elements.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW53/mat_ID/unit_ID or /MAT/TSAI_TAB/mat_ID/unit_ID
mat_title
ρiρi                
E11 E22            
G12 G23            
fct_ID11 fct_ID22 fct_ID12 fct_ID23 fct_ID45          
Fscale11 Fscale22 Fscale12 Fscale23 Fscale45

Definition

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
mat_title Material title

(Character, maximum 100 characters)

 
ρiρi Initial density

(Real)

[kgm3][kgm3]
E11 Young's modulus

(Real)

[Pa][Pa]
E22 Young's modulus

(Real)

[Pa][Pa]
G12 Shear modulus

(Real)

[Pa][Pa]
G23 Shear modulus

(Real)

[Pa][Pa]
fct_ID11 Yield stress function identifier in direction 11

(Integer)

 
fct_ID22 Yield stress function identifier in direction 22

(Integer)

 
fct_ID12 Yield stress function identifier in direction 12

(Integer)

 
fct_ID23 Yield stress function identifier in direction 23

(Integer)

 
fct_ID45 Yield stress function identifier in direction 45

(Integer)

 
Fscale11 Scale factor for yield function 11

Default = 1.0 (Real)

[Pa][Pa]
Fscale22 Scale factor for yield function 22

Default = 1.0 (Real)

[Pa][Pa]
Fscale12 Scale factor for yield function 12

Default = 1.0 (Real)

[Pa][Pa]
Fscale23 Scale factor for yield function 23

Default = 1.0 (Real)

[Pa][Pa]
Fscale45 Scale factor for yield function 45

Default = 1.0 (Real)

[Pa][Pa]

Example (Plastic)

Comments

  1. Orthotropic reference frame (1, 2, and 3) is defined in the appropriate property set of each finite element.
    For SOLID property set (/PROP/TYPE14), the global frame is used if Isolid = 1 or 2.

    clip0072
    Figure 1.
  2. The global frame is ( XX , YY , and ZZ ).
  3. The local frame is ( tt , rr , and ss ).
    σ11=E11ε11σ11=E11ε11 σ12=G12ε12σ12=G12ε12
    σ22=E22ε22σ22=E22ε22 σ23=G23ε23σ23=G23ε23
    σ33=E33ε33σ33=E33ε33 σ13=G13ε13σ13=G13ε13
  4. The law is othotropic, E33 = E22 and G13 = G12.
  5. The yield surface is Tsai-Wu yield criteria:(1)
    F=F1σ11+F2σ22+F2σ33+F11σ211+F22σ222+F22σ233+F44σ212+F55σ223+F44σ213+2F12σ11σ22+2F23σ22σ33+2F12σ11σ33F=F1σ11+F2σ22+F2σ33+F11σ211+F22σ222+F22σ233+F44σ212+F55σ223+F44σ213+2F12σ11σ22+2F23σ22σ33+2F12σ11σ33
    with (2)
    F1=1σc1y+1σt1y;F2=1σc2y+1σt2yF1=1σc1y+1σt1y;F2=1σc2y+1σt2y
    (3)
    F11=1σc1yσt1y;F22=1σc2yσt2y;F44=1σc4yσt4y;F55=1σc5yσt5yF11=1σc1yσt1y;F22=1σc2yσt2y;F44=1σc4yσt4y;F55=1σc5yσt5y
    (4)
    F12=12F11F22;F23=12F22

    The parameters: σc1y,σt1y,σc2y,σt2y,σc4y,σt4y,σc5y,σt5y are variable and introduced by yield function.

  6. If fct_ID45 ≠ 0,(5)
    F12=2σ245y12(F11+F22+F44)+F1+F2σc45y