/MAT/LAW74

Block Format Keyword This law describes the Thermal Hill orthotropic 3D material and is applicable only to solid elements. The yield stress may depend on strain rate, or on both strain rate and temperature.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW74/mat_ID/unit_ID
mat_title
ρi                
E υ εpmax εt εm
fct_IDE   Einf CE        
  Fsmooth Chard Fcut        
σ11y σ22y σ33y        
σ12y σ23y σ31y        
Tab_ID   σscale ε˙scale        
Ti ρ0Cp            

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρi Initial density.

(Real)

[kgm3]
E Initial Young's modulus.

(Real)

[Pa]
υ Poisson's ratio.

(Real)

 
fct_IDE Function identifier for the scale factor of Young's modulus, when Young's modulus is function of the plastic strain.
= 0(Default)
In this case the evolution of Young's depends on Einf and CE.

(Integer)

 
Einf Saturated Young's modulus for infinitive plastic strain.

(Real)

[Pa]
CE Parameter for Young's modulus evolution.

(Real)

 
εpmax Failure plastic strain.

Default = 1030 (Real)

 
εt Tensile failure strain at which stress starts to reduce.

Default = 1.0 × 1030 (Real)

 
εm Maximum tensile failure strain at which the stress in element is set to zero.

Default = 2.0 × 1030 (Real)

 
Fsmooth Smooth strain rate option flag.
= 0 (Default)
No strain rate smoothing.
= 1
Strain rate smoothing active.

(Integer)

 
Chard Hardening coefficient.
= 0
Hardening is full isotropic model.
= 1
Hardening uses the kinematic Prager-Ziegler model.
= between 0 and 1
Hardening is interpolated between the two models.

(Real)

 
Fcut Cutoff frequency for strain rate filtering.

Default = 1.0 × 1030 (Real)

[Hz]
σ11y Yield in direction 1.

(Real)

[Pa]
σ22y Yield in direction 2.

(Real)

[Pa]
σ33y Yield in direction 3.

(Real)

[Pa]
σ12y Yield in shear direction 12.

(Real)

[Pa]
σ23y Yield in shear direction 23.

(Real)

[Pa]
σ31y Yield in shear direction 31.

(Real)

[Pa]
Tab_ID Table identifier for yield stress definition. 6

(Integer)

 
σscale Yield stress scale factor.

Default set to 1.0 (Real)

[Pa]
ε˙scale Strain rate scale factor.

Default set to 1.0 (Real)

[1s]
Ti Initial temperature.

Default set to 293 K (Real)

[K]
ρ0Cp Specific heat per volume unit.

(Real)

[Jm3K]

Example (Aluminum)

Comments

  1. This material law must be used with property set /PROP/TYPE6 (SOL_ORTH), /PROP/TYPE14 (SOLID), /PROP/TYPE20 (TSHELL) or /PROP/TYPE21 (TSH_ORTH).
  2. The yield stress is defined by a user function and the yield stress is compared to equivalent stress:(1)
    σeq=F(σ2σ3)2+G(σ3σ1)2+H(σ1σ2)2+2Lσ232+2Mσ312+2Nσ122
    Where, HILL parameters are:(2)
    F=12(1σ222+1σ3321σ112),G=12(1σ112+1σ3321σ222),H=12(1σ112+1σ2221σ332) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGgbGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaamaalaaabaGaaGymaaqaaiabeo8aZnaaDaaaleaacaaIYaGaaGOmaaqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaeq4Wdm3aa0baaSqaaiaaiodacaaIZaaabaGaaGOmaaaaaaGccqGHsisldaWcaaqaaiaaigdaaeaacqaHdpWCdaqhaaWcbaGaaGymaiaaigdaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiaacYcacaGGhbGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaamaalaaabaGaaGymaaqaaiabeo8aZnaaDaaaleaacaaIXaGaaGymaaqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaeq4Wdm3aa0baaSqaaiaaiodacaaIZaaabaGaaGOmaaaaaaGccqGHsisldaWcaaqaaiaaigdaaeaacqaHdpWCdaqhaaWcbaGaaGOmaiaaikdaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiaacYcacaGGibGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaamaalaaabaGaaGymaaqaaiabeo8aZnaaDaaaleaacaaIXaGaaGymaaqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaeq4Wdm3aa0baaSqaaiaaikdacaaIYaaabaGaaGOmaaaaaaGccqGHsisldaWcaaqaaiaaigdaaeaacqaHdpWCdaqhaaWcbaGaaG4maiaaiodaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaaaa@7890@
    (3)
    L=12σ232,M=12σ312,N=12σ122 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGmbGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaiabeo8aZnaaDaaaleaacaaIYaGaaG4maaqaaiaaikdaaaaaaOGaaiilaiaac2eacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaGaeq4Wdm3aa0baaSqaaiaaiodacaaIXaaabaGaaGOmaaaaaaGccaGGSaGaaiOtaiabg2da9maalaaabaGaaGymaaqaaiaaikdacqaHdpWCdaqhaaWcbaGaaGymaiaaikdaaeaacaaIYaaa aaaaaaa@4E59@

    Where, σ11,σ22,σ33,σ12,σ23 and σ31 represent the stress components either in the orthotropic frame if an orthotropic property is used, or in the orthogonalized isoparametric frame.

  3. If εp (plastic strain) reaches εpmax , in one integration point, the solid element is deleted.
  4. If largest principal strain ε1>εt , stress is reduced using the following relation:(4)
    σ=σ(εmε1εmεt)
  5. If ε1>εm , the stress is reduced to 0 (but the element is not deleted).
  6. The table for yield stress definition can be 2-dimensional or 3-dimensional.
    • If the table is 2-dimensional, its parameters are assumed to represent respectively plastic strain and strain rate (εp,ε˙) .

      Then if εm1pεpεmp and ε˙n1ε˙ε˙n yield is linearly interpolated between the four values of the table corresponding to (εip,ε˙j),i=m1,m;j=n1,n .

    • If the table is 3-dimensional, its parameters are assumed to represent respectively plastic strain, strain rate, and temperature (εp,ε˙,T) .

      Then if εm1pεpεmp and ε˙n1ε˙ε˙n and Tq1TTq yield is linearly interpolated between the eight values of the table corresponding to (εip,ε˙j,Tk),i=m1,m;j=n1,n;k=q1,q .

      If (εp,ε˙) or (εp,ε˙,T) falls out of the range of the table, yield stress is obtained by linear extrapolation. Thus, it is necessary to input into the table the static curves corresponding to zero strain rate (entry ε˙=0 should belong to the table definition).

      Values of the table are yield stress values.

  7. If yield stress also depends on temperature, the table is 3-dimensional:
    If the /HEAT/MAT option is not associated to the material identifier, adiabatic conditions are assumed and temperature is computed as:(5)
    Τ=Ti+EintρCp(Volume)
    Where,
    Eint
    Internal energy computed by ρ ,
    Volume
    Current density and volume
    Cp
    Heat capacity per mass unit

    Otherwise, the finite element formulation for heat transfer must be asked for (Iform =1 in option /HEAT/MAT); initial temperature and specific heat input in the option /HEAT/MAT will then be used.

  8. The evolution of Young's modulus:
    • If fct_IDE > 0, the curve defines a scale factor for Young's modulus evolution with equivalent plastic strain, which means the Young's modulus is scaled by the function f(ε¯p) :(6)
      E(t)=Ef(ε¯p)

      The initial value of the scale factor should be equal to 1 and it decreases.

    • If fct_IDE = 0, the Young's modulus is calculated as:(7)
      E(t)=E(EEinf)[1exp(CEε¯p)]

      Where, E and Einf are respectively, the initial and asymptotic value of Young's modulus, ε¯p accumulated equivalent plastic strain.

      Note: If fct_IDE = 0 and CE = 0, Young's modulus E is kept constant.