Nonlinear finite element analyses confront users with many choices. An understanding of the fundamental concepts of
nonlinear finite element analysis is necessary if you do not want to use the finite element program as a black box.
The purpose of this manual is to describe the numerical methods included in Radioss.
Kinematic constraints are boundary conditions that are placed on nodal velocities. They are mutually exclusive for each degree
of freedom (DOF), and there can only be one constraint per DOF.
The stability of solution concerns the evolution of a process subjected to small perturbations. A process is considered
to be stable if small perturbations of initial data result in small changes in the solution. The theory of stability
can be applied to a variety of computational problems.
A large variety of materials is used in the structural components and must be modeled in stress analysis problems.
For any kind of these materials a range of constitutive laws is available to describe by a mathematical approach the
behavior of the material.
Explicit scheme is generally used for time integration in Radioss, in which velocities and displacements are obtained by direct integration of nodal accelerations.
The performance criterion in the computation was always an essential point in the architectural conception of Radioss. At first, the program has been largely optimized for the vectored super-calculators like CRAY. Then, a first parallel
version SMP made possible the exploration of shared memory on processors.
Shear in the Y direction along the face perpendicular to the X axis is a combination of
forces and moments. This can be seen in 図 1.
There are two mechanisms that can cause shear. The first is the beam double bending as
shown in 図 1. The second is shear generated by node displacement, as shown
in 図 2, where node 2 is displaced.
The forces and moments are calculated by:(1)
(2)
(3)
(4)
Where,
is the function defining the force-displacement
relationship.