/MAT/LAW82

Block Format Keyword This keyword defines the Ogden material. This law is compatible with solid and shell elements. In general it is used to model polymers and elastomers.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW82/mat_ID/unit_ID
mat_title
ρ i                
N   v            
μ 1 μ 2 μ 3    
. . . N values of μ (five per line)
α 1 α 2 α 3    
. . . N values of α (five per line)
D1 D2 D3    
. . . N values of D (five per line)

Definitions

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
mat_title Material title

(Character, maximum 100 characters)

 
ρ i Initial density

(Real)

[ kg m 3 ]
N Order of the Ogden model.

(Integer, maximum 10 digits)

 
v Poisson's ratio

Default value depends on D1 input. 2 (Real)

 
μ i ith Parameter (i = 1,N).

(Real)

 
α i ith Parameter (i = 1,N).

(Real)

 
Di ith Parameter (i = 1,N).

(Real)

 

Example (Rubber)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1 
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW82/1/1
LAW82 RUBBER
#              RHO_I
                1E-9                   0
#        N                            Nu
         2                          .495
#               Mu_i
                   2                   1
#            Alpha_i
                   2                  -2
#                D_i
                   0                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Example (Hyper-elastic Rubber)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW82/1/1
Rubber
#              RHO_I
                2E-9                   
#        N                            Nu
         3                             0
#               Mu_i
            1.061898            .0578289            .0159176
#            Alpha_i
             .428246             5.71269            -4.59726
#                D_i
                1E-4                   0                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. The strain energy density W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGxbaaaa@39B3@ is computed using the following equation:(1)
    W = i = 1 N 2 μ i α i 2 ( λ ¯ 1 α i + λ ¯ 2 α i + λ ¯ 3 α i 3 ) + i = 1 N 1 D i ( J 1 ) 2 i

    with λ ¯ = J 1 3 λ and J = λ 1 λ 2 λ 3

    where, λ i is the ith principal stretch.

  2. The initial shear modulus:(2)
    μ = i = 1 N μ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0ZaaabCaeaacqaH8oqBdaWgaaWcbaGaamyAaaqabaaabaGaamyA aiabg2da9iaaigdaaeaacaWGobaaniabggHiLdaaaa@413C@
    The Bulk Modulus is calculated as K = 2 D 1 , based on the following rules:
    • If ν = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maey ypa0JaaGimaaaa@396F@ , then D1 should be entered entered.
    • If ν 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maey iyIKRaaGimaaaa@3A30@ , D1 input is ignored and will be recalculated and output in the Starter output using the formula:(3)
      D 1 = 3 ( 1 2 v ) μ ( 1 + v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaaabeaakiabg2da9maalaaabaGaaG4maiaacIcacaaI XaGaeyOeI0IaaGOmaiaadAhacaGGPaaabaGaeqiVd0Maaiikaiaaig dacqGHRaWkcaWG2bGaaiykaaaaaaa@43E2@
    • If ν = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maey ypa0JaaGimaaaa@396F@ and D1 = 0, then a default value of υ = 0.495 is used and D1 is calculated using Equation 3
  3. To get a material without Poisson ratio effect, v should be defined with a small value (1e-10).
  4. Further explanation about this law can be found in "Non-Linear Elastic Deformations", by R.W Ogden, Ellis Horwood, 1984.