Cohesive Zone Modeling

Cohesive zone modeling can be used to model adhesive and bonded interfaces and corresponding crack initiation and propagation.

Cohesive zone modeling predicts the behavior within the cohesive element (or cohesive contact) and the adhesion between the cohesive element and parent elements is perfect. Locations where cracks are expected should be identified and explicitly defined as cohesive zones.


Figure 1.

There are multiple methods/techniques by which interfaces can currently be modeled in OptiStruct. In the damage-based method that relies on cohesive elements, thickness of the adhesive/bonded interface can be considered. For other methods/techniques, thickness effect is excluded. The term technique is used to distinguish between the element types that are used, which are cohesive elements and contact elements.

Interface Implementation Methods

Cohesive zones are used to model adhesive/bonded interfaces, where layers/parts are connected with resin or adhesive.

There are currently two approaches for simulating such interfaces:
  • Potential-based method
  • Damage-based method

There are three modes for the cohesive zone deformation.

In the present guideline, the symbols with subscript I, II and III refer to the three fracture modes, which are:


Figure 2.

The system x-y-z in Figure 2 is the cohesive zone coordinate system. Unless it is specified in the PCOHE card, the establishment is shown in CIFHEX/CIFPEN Bulk Data Enty. Mode I is the normal opening in z-direction, Mode II and III are the shear opening in x-z plane and y-z plane, respectively.

In contact, it is assumed that contact pairs have the same property in two tangential directions. Therefore, it is suggeted that the cohesive property in Mode II and III be the same.

Potential-based method (MCOHE)

In the potential-based method the traction-opening model is selected between three types of curves.

The type of the curve is defined on the MODEL field of the MCOHE Bulk Data Entry. The energy per area that can be absorbed by the cohesive element is defined in the COHE field. Respectively, critical opening displacement and maximum opening displacement are defined in CRTOD and MAXOD fields. CIFHEX and CIFPEN entries are used for modeling cohesive elements with potential-based method. The PCOHE Bulk Data Entry defines properties of cohesive elements. The thickness of the cohesive element layer can be non-zero in the actual geometry. The following types of traction-opening curves are available.


Figure 3. a) Biliniear; b) Exponential; c) Linear-Exponential

In the potential-based method, only a single layer of cohesive elements is allowed for modeling a particular adhesive or bonded interface.

Typically, tensile and shear deformations at the interface are of interest to determine the integrity and/or degradation of the adhesion/bonding. Stiffness in compression is controlled via the SFC field on the MCOHE entry.

The relative displacement between the nodes of the top and bottom faces are calculated. The three displacements ( d I , d I I and d I I I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbWaaSbaaSqaaiaadMgaaeqaaOGaaiilaiaadsgadaWgaaWc baGaamyAaiaadMgaaeqaaOGaaGjbVlaabggacaqGUbGaaeizaiaays W7caWGKbWaaSbaaSqaaiaadMgacaWGPbGaamyAaaqabaaaaa@4824@ ) are used to derive the combined relative displacement with the mixing formulation:(1) d eff = ( β d II ) 2 + ( β d III ) 2 + ( max{ 0.0, d I } ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGLbGaamOzaiaadAgaaeqaaOGaeyypa0ZaaOaaaeaadaqa daqaaiabek7aIjaadsgadaWgaaWcbaGaamyAaiaadMgaaeqaaaGcca GLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaa cqaHYoGycaWGKbWaaSbaaSqaaiaadMgacaWGPbGaamyAaaqabaaaki aawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqa aiGac2gacaGGHbGaaiiEamaacmaabaGaaGimaiaac6cacaaIWaGaai ilaiaadsgadaWgaaWcbaGaamyAaaqabaaakiaawUhacaGL9baaaiaa wIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaabeaaaaa@5827@
Where,
d I , d I I and d I I I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbWaaSbaaSqaaiaadMgaaeqaaOGaaiilaiaadsgadaWgaaWc baGaamyAaiaadMgaaeqaaOGaaGjbVlaabggacaqGUbGaaeizaiaays W7caWGKbWaaSbaaSqaaiaadMgacaWGPbGaamyAaaqabaaaaa@4824@
The opening in Mode I, II and III.
β
The mixing coefficient, which can be input on the BETA field.
Using this combined relative displacement ( d e f f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbWaaSbaaSqaaiaadwgacaWGMbGaamOzaaqabaaaaa@3C8C@ ), the combined traction is determined based on the chosen traction-opening curve (MODEL field on MCOHE). The equations for the bilinear, exponential and linear-exponential curves are expressed as:
  • Bilinear:
    (2) T={ 2G d m   d d c 0d d c 2G d m ( d m d d m d c ) d c d d m 0 d> d m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 da9maaceaabaqbaeqabmGaaaqaamaalaaabaGaaGOmaiaadEeaaeaa caWGKbWaaSbaaSqaaiaad2gaaeqaaOGaaeiiaaaadaWcaaqaaiaads gaaeaacaWGKbWaaSbaaSqaaiaadogaaeqaaaaaaOqaaiaaicdacqGH KjYOcaWGKbGaeyizImQaamizamaaBaaaleaacaWGJbaabeaaaOqaam aalaaabaGaaGOmaiaadEeaaeaacaWGKbWaaSbaaSqaaiaad2gaaeqa aaaakmaabmaabaWaaSaaaeaacaWGKbWaaSbaaSqaaiaad2gaaeqaaO GaeyOeI0IaamizaaqaaiaadsgadaWgaaWcbaGaamyBaaqabaGccqGH sislcaWGKbWaaSbaaSqaaiaadogaaeqaaaaaaOGaayjkaiaawMcaaa qaaiaadsgadaWgaaWcbaGaam4yaaqabaGccqGHKjYOcaWGKbGaeyiz ImQaamizamaaBaaaleaacaWGTbaabeaaaOqaaiaaicdaaeaacaWGKb GaeyOpa4JaamizamaaBaaaleaacaWGTbaabeaaaaaakiaawUhaaaaa @62B7@
  • Exponential:
    (3) T=G d d c 2 e d d c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 da9iaadEeadaWcaaqaaiaadsgaaeaacaWGKbWaa0baaSqaaiaadoga aeaacaaIYaaaaaaakiaadwgadaahaaWcbeqaaiabgkHiTmaalaaaba GaamizaaqaaiaadsgadaWgaaadbaGaam4yaaqabaaaaaaaaaa@4159@
  • Linear-exponential:
    (4) T={ 2qG d c (q+2)  d d c 0d d c 2qG d c (q+2)  e q( 1 d d c ) d> d c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 da9maaceaabaqbaeqabiGaaaqaamaalaaabaGaaGOmaiaadghacaWG hbaabaGaamizamaaBaaaleaacaWGJbaabeaakiaabIcacaqGXbGaae 4kaiaabkdacaqGPaGaaeiiaaaadaWcaaqaaiaadsgaaeaacaWGKbWa aSbaaSqaaiaadogaaeqaaaaaaOqaaiaaicdacqGHKjYOcaWGKbGaey izImQaamizamaaBaaaleaacaWGJbaabeaaaOqaamaalaaabaGaaGOm aiaadghacaWGhbaabaGaamizamaaBaaaleaacaWGJbaabeaakiaabI cacaqGXbGaae4kaiaabkdacaqGPaGaaeiiaaaacaWGLbWaaWbaaSqa beaacaWGXbWaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaWGKbaaba GaamizamaaBaaameaacaWGJbaabeaaaaaaliaawIcacaGLPaaaaaaa keaacaWGKbGaeyOpa4JaamizamaaBaaaleaacaWGJbaabeaaaaaaki aawUhaaaaa@6121@
Where,
d c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbWaaSbaaSqaaiaadogaaeqaaaaa@3AB4@
is the CRTOD
d m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbWaaSbaaSqaaiaadogaaeqaaaaa@3AB4@
is the MAXOD
d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbaaaa@39A0@
is the combined relative displacement ( d e f f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbWaaSbaaSqaaiaadwgacaWGMbGaamOzaaqabaaaaa@3C8C@ )

Also, in the linear-exponential curve definition, one more parameter, q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbaaaa@39A0@ , is required, which is input in the field EXP in MCOHE card.

Damage-based Method (MCOHED)

Damage-based method allows modeling of finite thickness of adhesive/bonded interfaces. This allows for modeling adhesive layers based on experimental data.

In this method, crack growth is controlled by development of damage in each element. The damage of an element is controlled by two indices, namely, damage initiation index and damage evolution index. In each element, the two indices are initially zero. With loading, damage initiation index is increasing. When damage initiation index reaches 1.0, damage appears. Damage initiation index keeps being 1.0 afterwards and damage evolution index starts to increase. When damage evolution index reaches 1.0, the damage is matured and there is no cohesion afterwards. Thus, crack advances.

The damage initiation and evolution are controlled by several parameters defined in MCOHED, DMGINI (Damage Initiation) and DMGEVO (Damage Evolution) cards by users.

Depending on the modeling technique (element-based versus contact-based), either CIFHEX/CIFPEN/PCOHE entries or CONTACT interfaces are required. Refer to Modeling Techniques.

Elasticity modulus/Penalty stiffness in the three directions are defined on the KI, KII, and KIII fields of the MCOHED entry, in which KI is for the normal direction, KII and KIII are for the two tangential directions. Single or multiple layers of cohesive elements can be defined in the interface.

Typically, tensile and shear deformations at the interface are of interest to determine the integrity and/or degradation of the adhesion/bonding. Stiffness in compression is controlled via the SFC field on MCOHED entry in the element-based technique. When contact-based technique is used, stiffness in compression is determined by contact property.

For the element-based technique, thickness of the cohesive element layer can be defined using the THICKNESS field on PCOHE. For contact-based technique, thickness of the cohesive zone is considered internally to be one unit.

The following introduction on damage-based cohesive model is for element-based technique. They are also valid for contact-based technique, if thickness t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG0baaaa@39B0@ is replaced by unity.

The DMGINID and DMGEVOID fields on MCOHED are used to specify the mandatory DMGINI and DMGEVO Bulk Data Entries in element-based modeling. When contact based modeling is used, stiffness in compression is determined by contact property.

The relative displacement between the nodes of the top and bottom faces are calculated similar to the potential-based method. First, the trial traction values ( K i d i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGPbaabeaakiaadsgadaWgaaWcbaGaamyAaaqabaaaaa@39EB@ / t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG0bWaaSbaaSqaaiaaicdaaeqaaaaa@3A96@ ) are calculated by multiplying the penalty stiffness (which is elasticity modulus divided by thickness in quantity) and the opening in the three modes.

Next, determination of the damage initiation is carried out, using the specified criteria on the CRI field of the DMGINI entry.

Strain-based Initiation Criteria

  • The maximum strain value is defined on the V1, V2, V3 fields of the DMGINI entry.
  • The actual strain is calculated by the formula: (relative displacement divided by the thickness)

    Where, thickness is defined by the THICKNESS field on PCOHE.

  • Using both maximum strain and actual strain, the damage initiation determination is done based on the following formula:
    MAXE
    (5) max{ ε I max( e I ) , ε II max( e II ) , ε III max( e III ) }=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaamyyaiaadIhadaGadaqaamaalaaapaqaa8qacqaH1oqz paWaaSbaaSqaaiaadMeaaeqaaaGcbaWdbiaad2gacaWGHbGaamiEam aabmaabaGaamyza8aadaWgaaWcbaGaamysaaqabaaak8qacaGLOaGa ayzkaaaaaiaacYcadaWcaaWdaeaapeGaeqyTdu2damaaBaaaleaape GaamysaiaadMeaa8aabeaaaOqaa8qacaWGTbGaamyyaiaadIhadaqa daqaaiaadwgapaWaaSbaaSqaa8qacaWGjbGaamysaaWdaeqaaaGcpe GaayjkaiaawMcaaaaacaGGSaWaaSaaa8aabaWdbiabew7aL9aadaWg aaWcbaWdbiaadMeacaWGjbGaamysaaWdaeqaaaGcbaWdbiaad2gaca WGHbGaamiEamaabmaabaGaamyza8aadaWgaaWcbaWdbiaadMeacaWG jbGaamysaaWdaeqaaaGcpeGaayjkaiaawMcaaaaaaiaawUhacaGL9b aacqGH9aqpcaaIXaaaaa@5FB9@
    Where,
    m a x e I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaamyyaiaadIhacaWGLbWdamaaBaaaleaacaWG4baabeaa aaa@3B0D@
    = V1.
    m a x e II MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaamyyaiaadIhacaWGLbWdamaaBaaaleaacaWG4baabeaa aaa@3B0D@
    = V2.
    m a x e III MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaamyyaiaadIhacaWGLbWdamaaBaaaleaacaWG4baabeaa aaa@3B0D@
    = V3.
    QUADE
    (6) ( ε I max( e I ) ) 2 + ( ε II max( e II ) ) 2 + ( ε III max( e III ) ) 2 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaapeWaaSaaa8aabaWdbiabew7aL9aadaWgaaWcbaGa amysaaqabaaakeaapeGaamyBaiaadggacaWG4bWaaeWaaeaacaWGLb WdamaaBaaaleaacaWGjbaabeaaaOWdbiaawIcacaGLPaaaaaaacaGL OaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkdaqada WdaeaapeWaaSaaa8aabaWdbiabew7aL9aadaWgaaWcbaWdbiaadMea caWGjbaapaqabaaakeaapeGaamyBaiaadggacaWG4bWaaeWaaeaaca WGLbWdamaaBaaaleaapeGaamysaiaadMeaa8aabeaaaOWdbiaawIca caGLPaaaaaaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaa GccqGHRaWkdaqadaWdaeaapeWaaSaaa8aabaWdbiabew7aL9aadaWg aaWcbaWdbiaadMeacaWGjbGaamysaaWdaeqaaaGcbaWdbiaad2gaca WGHbGaamiEamaabmaabaGaamyza8aadaWgaaWcbaWdbiaadMeacaWG jbGaamysaaWdaeqaaaGcpeGaayjkaiaawMcaaaaaaiaawIcacaGLPa aapaWaaWbaaSqabeaapeGaaGOmaaaakiabg2da9iaaigdaaaa@6345@
    Where,
    m a x e I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaamyyaiaadIhacaWGLbWdamaaBaaaleaacaWG4baabeaa aaa@3B0E@
    = V1.
    m a x e II MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaamyyaiaadIhacaWGLbWdamaaBaaaleaacaWG4baabeaa aaa@3B0E@
    = V2.
    m a x e III MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaamyyaiaadIhacaWGLbWdamaaBaaaleaacaWG4baabeaa aaa@3B0E@
    = V3.
    (7) ε i = d i t 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaaaeaacaWGKbWaaSbaaSqa aiaadMgaaeqaaaGcbaGaamiDamaaBaaaleaacaaIWaaabeaaaaaaaa@3DC1@
    Where, i = I , II , III MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2 da9iaadIhacaGGSaGaamyEaiaacYcacaWG6baaaa@3C42@ and t 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIWaaabeaaaaa@37D3@ are the thickness defined in the PCOHE entry.

Stress-based Initiation Criteria

  • The maximum stress value is defined on the V1, V2, V3 fields of the DMGINI entry.
  • The actual stress is the value of trial traction in each of the corresponding three directions.
  • Using both maximum stress and actual stress, the damage initiation determination is done based on the following formula:
    MAXS
    (8) max{ σ I max( σ I ) , σ II max( σ II ) , σ III max( σ III ) }=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaamyyaiaadIhadaGadaqaamaalaaapaqaaiabeo8aZnaa BaaaleaacaWGjbaabeaaaOqaa8qacaWGTbGaamyyaiaadIhapaWaae WaaeaacqaHdpWCdaWgaaWcbaGaamysaaqabaaakiaawIcacaGLPaaa aaWdbiaacYcadaWcaaWdaeaacqaHdpWCdaWgaaWcbaGaamysaiaadM eaaeqaaaGcbaWdbiaad2gacaWGHbGaamiEa8aadaqadaqaaiabeo8a ZnaaBaaaleaapeGaamysaiaadMeaa8aabeaaaOGaayjkaiaawMcaaa aapeGaaiilamaalaaapaqaaiabeo8aZnaaBaaaleaapeGaamysaiaa dMeacaWGjbaapaqabaaakeaapeGaamyBaiaadggacaWG4bWdamaabm aabaGaeq4Wdm3aaSbaaSqaa8qacaWGjbGaamysaiaadMeaa8aabeaa aOGaayjkaiaawMcaaaaaa8qacaGL7bGaayzFaaGaeyypa0JaaGymaa aa@621C@
    Where,
    m a x σ I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaamyyaiaadIhapaGaeq4Wdm3aaSbaaSqaaiaadIhaaeqa aaaa@3BE6@
    = V1.
    m a x σ II MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaamyyaiaadIhapaGaeq4Wdm3aaSbaaSqaaiaadIhaaeqa aaaa@3BE6@
    = V2.
    m a x σ III MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaamyyaiaadIhapaGaeq4Wdm3aaSbaaSqaaiaadIhaaeqa aaaa@3BE6@
    = V3.
    (9) σ i = K i d i t 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMgaaeqaaOGaeyypa0Jaam4AamaaBaaaleaacaWGPbaa beaakmaalaaabaGaamizamaaBaaaleaacaWGPbaabeaaaOqaaiaads hadaWgaaWcbaGaaGimaaqabaaaaaaa@3FF1@
    Where,
    i = I , II , III MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2 da9iaadIhacaGGSaGaamyEaiaacYcacaWG6baaaa@3C42@ t 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIWaaabeaaaaa@37D3@
    Thickness defined in the PCOHE entry.
    K i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaWGPbaabeaaaaa@37FE@
    Initial elastic stiffness.
    QUADS
    (10) ( σ I max( σ I ) ) 2  + ( σ II max( σ II ) ) 2 + ( σ III max( σ III ) ) 2 =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaapeWaaSaaa8aabaGaeq4Wdm3aaSbaaSqaaiaadMea aeqaaaGcbaWdbiaad2gacaWGHbGaamiEa8aadaqadaqaaiabeo8aZn aaBaaaleaacaWGjbaabeaaaOGaayjkaiaawMcaaaaaa8qacaGLOaGa ayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGcpaGaafiia8qacqGHRa WkdaqadaWdaeaapeWaaSaaa8aabaGaeq4Wdm3aaSbaaSqaa8qacaWG jbGaamysaaWdaeqaaaGcbaWdbiaad2gacaWGHbGaamiEa8aadaqada qaaiabeo8aZnaaBaaaleaapeGaamysaiaadMeaa8aabeaaaOGaayjk aiaawMcaaaaaa8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaik daaaGccqGHRaWkdaqadaWdaeaapeWaaSaaa8aabaGaeq4Wdm3aaSba aSqaa8qacaWGjbGaamysaiaadMeaa8aabeaaaOqaa8qacaWGTbGaam yyaiaadIhapaWaaeWaaeaacqaHdpWCdaWgaaWcbaWdbiaadMeacaWG jbGaamysaaWdaeqaaaGccaGLOaGaayzkaaaaaaWdbiaawIcacaGLPa aapaWaaWbaaSqabeaapeGaaGOmaaaakiabg2da9iaaigdaaaa@66CA@
    Where,
    m a x σ I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaamyyaiaadIhapaGaeq4Wdm3aaSbaaSqaaiaadIhaaeqa aaaa@3BE6@
    = V1.
    m a x σ II MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaamyyaiaadIhapaGaeq4Wdm3aaSbaaSqaaiaadIhaaeqa aaaa@3BE6@
    = V2.
    m a x σ III MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaamyyaiaadIhapaGaeq4Wdm3aaSbaaSqaaiaadIhaaeqa aaaa@3BE6@
    = V3.

If damage initiation criteria are not satisfied, then there is no damage. The trial traction is equal to actual traction. Therefore, there is no crack initiation and propagation, and the corresponding cohesive-related output are printed to the result files.

If damage initiation criteria are satisfied, then this implies that damage is initiated. The damage evolution index is now calculated. There are two methods for the damage evolution index calculation:
  • Displacement-based damage evolution index (TYPE=COHDISP on DMGEVO entry)
  • Energy dissipation-based damage evolution index (TYPE=COHENRG on DMGEVO entry)

For either type of damage evoluation index calculation, either linear (SHAPE=LIN) or exponential (SHAPE=EXP), shapes of the traction-opening curve can be used on the DMGEVO entry.

D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@36C0@ is the damage evolution index (it is always ≤ 1.0) and in the output it is referred as damage index.

Displacement-based Damage Evolution Index

If SHAPE = LIN:
If the traction T i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGPbaabeaaaaa@37E7@ decreases linearly during damage evolution, then the damage index is formulated by:(11) D = d f d m a x d m a x d o d f d o MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiraiabg2da9maalaaapaqaa8qacaWGKbWdamaaBaaaleaapeGa amOzaaWdaeqaaaGcbaWdbiaadsgapaWaaSbaaSqaa8qacaWGTbGaam yyaiaadIhaa8aabeaaaaGcpeWaaSaaa8aabaWdbmaabmaapaqaa8qa caWGKbWdamaaBaaaleaapeGaamyBaiaadggacaWG4baapaqabaGcpe GaeyOeI0Iaamiza8aadaWgaaWcbaWdbiaad+gaa8aabeaaaOWdbiaa wIcacaGLPaaaa8aabaWdbmaabmaapaqaa8qacaWGKbWdamaaBaaale aapeGaamOzaaWdaeqaaOWdbiabgkHiTiaadsgapaWaaSbaaSqaa8qa caWGVbaapaqabaaak8qacaGLOaGaayzkaaaaaaaa@4F15@


Figure 4.
If SHAPE=EXP
If the traction T i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGPbaabeaaaaa@37E7@ decreases exponentially during the damage evolution, then the damage evolution index is formulated by:(12) D = 1 d o d m a x 1 1 exp α d m a x d o d f d o 1 exp α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiraiabg2da9iaaigdacqGHsisldaWcaaWdaeaapeGaamiza8aa daWgaaWcbaWdbiaad+gaa8aabeaaaOqaa8qacaWGKbWdamaaBaaale aapeGaamyBaiaadggacaWG4baapaqabaaaaOWdbmaadmaapaqaa8qa caaIXaGaeyOeI0YaaSaaa8aabaWdbiaaigdacqGHsislcaqGLbGaae iEaiaabchadaqadaWdaeaapeGaeyOeI0IaeqySde2aaSaaa8aabaWd biaadsgapaWaaSbaaSqaa8qacaWGTbGaamyyaiaadIhaa8aabeaak8 qacqGHsislcaWGKbWdamaaBaaaleaapeGaam4BaaWdaeqaaaGcbaWd biaadsgapaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaeyOeI0Iaam iza8aadaWgaaWcbaWdbiaad+gaa8aabeaaaaaak8qacaGLOaGaayzk aaaapaqaa8qacaaIXaGaeyOeI0IaaeyzaiaabIhacaqGWbWaaeWaa8 aabaWdbiabgkHiTiabeg7aHbGaayjkaiaawMcaaaaaaiaawUfacaGL Dbaaaaa@62C2@


Figure 5.
Where,
d m a x MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiaad2gacaWGHbGaamiEaaWdaeqaaaaa @3A21@
Maximum opening ( d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DD@ ) in history. If the cohesive zone is only being loaded, then d m a x MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiaad2gacaWGHbGaamiEaaWdaeqaaaaa @3A21@ is equal to the current d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DD@ , which is calculated by OptiStruct and updated at each step. If cohesive zone is also unloaded, then within the unloading zone, d m a x MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiaad2gacaWGHbGaamiEaaWdaeqaaaaa @3A21@ is equal to the maximum d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DD@ in history (as it could be a previous value of d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DD@ , prior to the beginning of unloading).
d o MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiaad+gaa8aabeaaaaa@3840@
Critical opening (the opening, d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DD@ , when damage is initiated – when the crack initiation criteria are satisfied).
d f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaGaamOzaaqabaaaaa@3818@
Maximum opening ( d f = d o + W 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaGaamOzaaqabaGccqGH9aqpcaWGKbWaaSba aSqaaiaad+gaaeqaaOGaey4kaSIaam4vamaaBaaaleaacaaIXaaabe aaaaa@3DE0@ ).
W 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa WcbaGaaGymaaqabaaaaa@37AC@
W1 field on the DMGEVO entry.
α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdegaaa@37A8@
ALPHA field on DMGEVO entry.
d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DD@
Current opening at each step of the solution.
(13) d = d I 2 + d II 2 + m a x 0.0 , d III 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiabg2da9maakaaapaqaa8qadaqadaWdaeaapeGaamiza8aa daWgaaWcbaWdbiaadIhaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaW baaSqabeaapeGaaGOmaaaakiabgUcaRmaabmaapaqaa8qacaWGKbWd amaaBaaaleaapeGaamyEaaWdaeqaaaGcpeGaayjkaiaawMcaa8aada ahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaamyBaiaadggacaWG4bWa aeWaa8aabaWdbiaaicdacaGGUaGaaGimaiaacYcacaWGKbWdamaaBa aaleaapeGaamOEaaWdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWc beqaa8qacaaIYaaaaaqabaaaaa@4ECB@
Where, d I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWG4baabeaaaaa@3806@ , d II MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWG5baabeaaaaa@3807@ , and d III MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWG6baabeaaaaa@3808@ are the opening of Mode I, II and III fracture, respectively.

Energy Dissipation-based Damage Evolution Index

For energy dissipation-based damage evoluation index, the critical total energy ( G c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGJbaabeaaaaa@37D4@ ) also known as fracture toughness is the key value used for calculations. Its calculation and usage depend on the type of the curve (LIN/EXP) and the mode mix method (MMXFM = blank, 1,2). G c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGJbaabeaaaaa@37D4@ represents the energy at which failure occurs.

W1, W2, and W3 fields on the DMGEVO entry define the critical energies in each of the three fracture modes.

The following nomenclature helps identify the fracture modes versus the user-defined parameters.
Normal Fracture Mode I:
W1 = G I c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGjbGaam4yaaqabaaaaa@38A2@ (Power law) = G n c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGUbGaam4yaaqabaaaaa@38C7@ (Benzeggah-Kenane (BK) form) defines the critical energy at which failure occurs in normal direction.
G I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGjbaabeaaaaa@37BA@ (Power law) = G n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGUbaabeaaaaa@37DF@ (BK form) defines the energy (area under the traction-opening curve) until the current step of the solution in the normal direction.
Shear Fracture Mode II:
W2 = G I I c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGjbGaamysaiaadogaaeqaaaaa@3970@ (Power law) defines the critical energy at which failure occurs in Mode II.
W2 = G s c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGZbGaam4yaaqabaaaaa@38CC@ (BK form) defines the critical energy at which failure occurs in the resultant shear direction.
G I I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGjbGaamysaaqabaaaaa@3888@ (Power law) defines the energy (area under the traction-opening curve) until the current step of the solution corresponding to Mode II.
G s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGZbaabeaaaaa@37E4@ (BK form) defines the energy (area under the traction-opening curve) until the current step of the solution in the shear (it is interpreted as a combined resultant shear for BK form).
Shear Fracture Mode III:
W3 = G I I I c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGjbGaamysaiaadMeacaWGJbaabeaaaaa@3A3E@ (Power law) defines the critical energy at which failure occurs in Mode III.
G I I I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGjbGaamysaiaadMeaaeqaaaaa@3956@ defines the energy (area under the curve) until the current step of the solution corresponding to Mode III.
Note: For BK form, both Mode II and Mode III are combined and are considered as a resultant shear. W3 is not applicable for BK form. Thus, G s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGZbaabeaaaaa@37E4@ is considered as the energy in resultant shear for BK form (unlike separate G I I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGjbGaamysaaqabaaaaa@3888@ energy in in-plane shear and G I I I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGjbGaamysaiaadMeaaeqaaaaa@3956@ energy in the out-of-plane transverse shear for Power law), while G n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGUbaabeaaaaa@37DF@ is the energy in normal direction for BK form, similar to G I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGjbaabeaaaaa@37BA@ , which is the energy in normal direction for Power law.

G T = G n + G s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadsfaa8aabeaakiabg2da98qacaWG hbWdamaaBaaaleaacaWGUbaabeaakiabgUcaR8qacaWGhbWdamaaBa aaleaacaWGZbaabeaaaaa@3E1D@ is the total energy (area under the curve) until the current solution step.

If SHAPE = LIN:
If the traction T i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGPbaabeaaaaa@37E7@ decreases linearly during the damage evolution, then the damage evolution index is formulated by:(14) D = d f d m a x d m a x d o d f d o MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiraiabg2da9maalaaapaqaa8qacaWGKbWdamaaBaaaleaapeGa amOzaaWdaeqaaaGcbaWdbiaadsgapaWaaSbaaSqaa8qacaWGTbGaam yyaiaadIhaa8aabeaaaaGcpeWaaSaaa8aabaWdbmaabmaapaqaa8qa caWGKbWdamaaBaaaleaapeGaamyBaiaadggacaWG4baapaqabaGcpe GaeyOeI0Iaamiza8aadaWgaaWcbaWdbiaad+gaa8aabeaaaOWdbiaa wIcacaGLPaaaa8aabaWdbmaabmaapaqaa8qacaWGKbWdamaaBaaale aapeGaamOzaaWdaeqaaOWdbiabgkHiTiaadsgapaWaaSbaaSqaa8qa caWGVbaapaqabaaak8qacaGLOaGaayzkaaaaaaaa@4F15@
Where,
d m a x MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiaad2gacaWGHbGaamiEaaWdaeqaaaaa @3A21@
The maximum opening ( d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DD@ ) in history. If the cohesive zone is only being loaded, then d m a x MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiaad2gacaWGHbGaamiEaaWdaeqaaaaa @3A21@ is equal to the current d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DD@ , which is calculated by OptiStruct and updated at each step. If cohesive zone is also unloaded, then within the unloading zone, d m a x MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiaad2gacaWGHbGaamiEaaWdaeqaaaaa @3A21@ is equal to the maximum d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DD@ in history (as it could be a previous value of d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DD@ , prior to the beginning of unloading).
d o MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiaad+gaa8aabeaaaaa@3840@
The critical opening (the opening, d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DD@ , when damage is initiated – when the crack initiation criteria are satisfied).
d f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaGaamOzaaqabaaaaa@3818@
The opening at which zero traction is produced in the analysis.
Estimated by the critical energy ( G c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGJbaabeaaaaa@37D4@ ):(15) d f = 2 G c T max MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaGaamOzaaqabaGccqGH9aqpdaWcaaqaaiaa ikdacaWGhbWaaSbaaSqaaiaadogaaeqaaaGcbaGaamivamaaBaaale aaciGGTbGaaiyyaiaacIhaaeqaaaaaaaa@3FB7@
T max MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaciyBaiaacggacaGG4baabeaaaaa@39C2@
Effective traction when crack initiation criteria are satisfied.
The critical energy, G c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGJbaabeaaaaa@37D4@ depends on the mode mix form (MMXFM field on DMGEVO entry).
  • If MMXFM field is blank:(16) G c = W 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGJbaabeaakiabg2da9iaadEfadaWgaaWcbaGaaGymaaqa baaaaa@3AA7@
  • If MMXFM field is set to 1 (Power law):
    The G c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGJbaabeaaaaa@37D3@ is derived from:(17) G I G I c α + G I I G I I c α + G I I I G I I I c α = G G c α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbmaalaaapaqaa8qacaWGhbWdamaaBaaaleaapeGa amysaaWdaeqaaaGcbaWdbiaadEeapaWaaSbaaSqaa8qacaWGjbGaam 4yaaWdaeqaaaaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGa eqySdegaaOGaey4kaSYaaeWaa8aabaWdbmaalaaapaqaa8qacaWGhb WdamaaBaaaleaapeGaamysaiaadMeaa8aabeaaaOqaa8qacaWGhbWd amaaBaaaleaapeGaamysaiaadMeacaWGJbaapaqabaaaaaGcpeGaay jkaiaawMcaa8aadaahaaWcbeqaa8qacqaHXoqyaaGccqGHRaWkdaqa daWdaeaapeWaaSaaa8aabaWdbiaadEeapaWaaSbaaSqaa8qacaWGjb GaamysaiaadMeaa8aabeaaaOqaa8qacaWGhbWdamaaBaaaleaapeGa amysaiaadMeacaWGjbGaam4yaaWdaeqaaaaaaOWdbiaawIcacaGLPa aapaWaaWbaaSqabeaapeGaeqySdegaaOGaeyypa0ZaaeWaa8aabaWd bmaalaaapaqaa8qacaWGhbaapaqaa8qacaWGhbWdamaaBaaaleaape Gaam4yaaWdaeqaaaaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaa peGaeqySdegaaaaa@5EEC@ Where, G I c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadMeacaWGJbaapaqabaaaaa@38E5@ , G I I c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadMeacaWGjbGaam4yaaWdaeqaaaaa @39B3@ , and G I I I c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadMeacaWGjbGaamysaiaadogaa8aa beaaaaa@3A81@ are the W1, W2, and W3 fields on the DMGEVO entry.
    The value of G c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGJbaabeaaaaa@37D3@ is derived as:(18) G c = [ ( d I I d ) 2 α ( 1 W 2 ) α + ( d I I I d ) 2 α ( 1 W 3 ) α + ( max ( 0.0 , d I ) d ) 2 α ( 1 W I ) α ] 1 α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGJbaabeaakiabg2da9maadmaabaWaaeWaaeaadaWcaaqa aiaadsgadaWgaaWcbaGaamysaiaadMeaaeqaaaGcbaGaamizaaaaai aawIcacaGLPaaadaahaaWcbeqaaiaaikdacqaHXoqyaaGcdaqadaqa amaalaaabaGaaGymaaqaaiaadEfadaWgaaWcbaGaaGOmaaqabaaaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacqaHXoqyaaGccqGHRaWkdaqa daqaamaalaaabaGaamizamaaBaaaleaacaWGjbGaamysaiaadMeaae qaaaGcbaGaamizaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikda cqaHXoqyaaGcdaqadaqaamaalaaabaGaaGymaaqaaiaadEfadaWgaa WcbaGaaG4maaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqaH XoqyaaGccqGHRaWkdaqadaqaamaalaaabaGaciyBaiaacggacaGG4b WaaeWaaeaacaaIWaGaaiOlaiaaicdacaGGSaGaamizamaaBaaaleaa caWGjbaabeaaaOGaayjkaiaawMcaaaqaaiaadsgaaaaacaGLOaGaay zkaaWaaWbaaSqabeaacaaIYaGaeqySdegaaOWaaeWaaeaadaWcaaqa aiaaigdaaeaacaWGxbWaaSbaaSqaaiaadMeaaeqaaaaaaOGaayjkai aawMcaamaaCaaaleqabaGaeqySdegaaaGccaGLBbGaayzxaaWaaWba aSqabeaacqGHsisldaWcaaqaaiaaigdaaeaacqaHXoqyaaaaaaaa@70BB@

    Where, α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdegaaa@37A8@ is the ALPHA field on DMGEVO entry.

  • If MMXFM field is set to 2 (BK form):
    The value of G c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGJbaabeaaaaa@37D3@ is based on the following equation:(19) G n c + G s c G n c G s G T η = G c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaad6gacaWGJbaapaqabaGcpeGaey4k aSYaaeWaa8aabaWdbiaadEeapaWaaSbaaSqaa8qacaWGZbGaam4yaa WdaeqaaOWdbiabgkHiTiaadEeapaWaaSbaaSqaa8qacaWGUbGaam4y aaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qadaWcaaWdae aapeGaam4ra8aadaWgaaWcbaWdbiaadohaa8aabeaaaOqaa8qacaWG hbWdamaaBaaaleaapeGaamivaaWdaeqaaaaaaOWdbiaawIcacaGLPa aapaWaaWbaaSqabeaapeGaeq4TdGgaaOGaeyypa0Jaam4ra8aadaWg aaWcbaWdbiaadogaa8aabeaaaaa@4E14@
    Where,
    η MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aObaa@3795@
    ALPHA field on DMGEVO entry.
    G n c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaad6gacaWGJbaapaqabaaaaa@390A@ and G s c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadohacaWGJbaapaqabaaaaa@390F@
    W1 and W2 fields on the DMGEVO entry.

    G T = G n + G s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadsfaa8aabeaakiabg2da98qacaWG hbWdamaaBaaaleaacaWGUbaabeaakiabgUcaR8qacaWGhbWdamaaBa aaleaacaWGZbaabeaaaaa@3E1D@ is the total energy (area under the curve) until the current solution step.

If SHAPE=EXP:
If the traction T i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGPbaabeaaaaa@37E7@ decreases exponentially during the damage evolution, then the damage evolution index is formulated by:(20) D = d o d f T G c G o d d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiraiabg2da9maapehabaWaaSaaaeaacaWGubaabaGaam4ramaa BaaaleaacaWGJbaabeaakiabgkHiTiaadEeadaWgaaWcbaGaam4Baa qabaaaaOGaaeizaiaadsgaaSqaaiaadsgapaWaaSbaaWqaa8qacaWG Vbaapaqabaaal8qabaGaamiza8aadaWgaaadbaWdbiaadAgaa8aabe aaa0WdbiabgUIiYdaaaa@4659@
Where,
T MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfaaaa@36C2@
Compound traction.
G o MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ramaaBaaaleaacaWGVbaabeaaaaa@37F5@
Elastic energy absorbed by the cohesion. It is the area under the straight line-section (before damage initiation) of the exponential curve.
d o MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiaad+gaa8aabeaaaaa@3840@
Critical opening (the opening, d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DD@ , when damage is initiated – when the crack initiation criteria are satisfied).
d f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaGaamOzaaqabaaaaa@3818@
Final opening.
G c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ramaaBaaaleaacaWGJbaabeaaaaa@37E9@
Total energy that can be dissipated by cohesion under the current opening pattern (combination of d I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWG4baabeaaaaa@3806@ , d II MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWG5baabeaaaaa@3807@ , and d III MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWG6baabeaaaaa@3808@ ). The critical energy, G c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ramaaBaaaleaacaWGJbaabeaaaaa@37E9@ , is calculated automatically by OptiStruct and it depends on the mode mix form (MMXFM field on DMGEVO entry) and the energy that can be dissipated in each mode (W1, W2, and W3).
  • If MMXFM field is blank:(21) G c = W 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGJbaabeaakiabg2da9iaadEfadaWgaaWcbaGaaGymaaqa baaaaa@3AA7@
  • If MMXFM field is set to 1 (Power law):
    The G c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGJbaabeaaaaa@37D3@ is derived from:(22) G I G I c α + G I I G I I c α + G I I I G I I I c α = G G c α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbmaalaaapaqaa8qacaWGhbWdamaaBaaaleaapeGa amysaaWdaeqaaaGcbaWdbiaadEeapaWaaSbaaSqaa8qacaWGjbGaam 4yaaWdaeqaaaaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGa eqySdegaaOGaey4kaSYaaeWaa8aabaWdbmaalaaapaqaa8qacaWGhb WdamaaBaaaleaapeGaamysaiaadMeaa8aabeaaaOqaa8qacaWGhbWd amaaBaaaleaapeGaamysaiaadMeacaWGJbaapaqabaaaaaGcpeGaay jkaiaawMcaa8aadaahaaWcbeqaa8qacqaHXoqyaaGccqGHRaWkdaqa daWdaeaapeWaaSaaa8aabaWdbiaadEeapaWaaSbaaSqaa8qacaWGjb GaamysaiaadMeaa8aabeaaaOqaa8qacaWGhbWdamaaBaaaleaapeGa amysaiaadMeacaWGjbGaam4yaaWdaeqaaaaaaOWdbiaawIcacaGLPa aapaWaaWbaaSqabeaapeGaeqySdegaaOGaeyypa0ZaaeWaa8aabaWd bmaalaaapaqaa8qacaWGhbaapaqaa8qacaWGhbWdamaaBaaaleaape Gaam4yaaWdaeqaaaaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaa peGaeqySdegaaaaa@5EEC@
    Where,
    G I c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadMeacaWGJbaapaqabaaaaa@38E5@ , G I I c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadMeacaWGjbGaam4yaaWdaeqaaaaa @39B3@ , and G I I I c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadMeacaWGjbGaamysaiaadogaa8aa beaaaaa@3A81@
    The W1, W2, and W3 fields on the DMGEVO entry.
    G I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadMeaa8aabeaaaaa@37FD@ , G I I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadMeacaWGjbaapaqabaaaaa@38CB@ , and G I I I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadMeacaWGjbGaamysaaWdaeqaaaaa @3999@
    The energies under the traction-opening curve until the current step. They depend on the type of curve (LIN/EXP).
    Therefore, the derivation of G c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGJbaabeaaaaa@37D3@ also depends on the type of curve.
    However, by default, for the exponential curve, the same value of G c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGJbaabeaaaaa@37D3@ is used for the linear curve.(23) G c = [ ( d I I d ) 2 α ( 1 W 2 ) α + ( d I I I d ) α ( 1 W 3 ) α + ( max ( 0.0 , d I ) d ) 2 α ( 1 W I ) α ] 1 α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGJbaabeaakiabg2da9maadmaabaWaaeWaaeaadaWcaaqa aiaadsgadaWgaaWcbaGaamysaiaadMeaaeqaaaGcbaGaamizaaaaai aawIcacaGLPaaadaahaaWcbeqaaiaaikdacqaHXoqyaaGcdaqadaqa amaalaaabaGaaGymaaqaaiaadEfadaWgaaWcbaGaaGOmaaqabaaaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacqaHXoqyaaGccqGHRaWkdaqa daqaamaalaaabaGaamizamaaBaaaleaacaWGjbGaamysaiaadMeaae qaaaGcbaGaamizaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiabeg7a HbaakmaabmaabaWaaSaaaeaacaaIXaaabaGaam4vamaaBaaaleaaca aIZaaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiabeg7aHbaa kiabgUcaRmaabmaabaWaaSaaaeaaciGGTbGaaiyyaiaacIhadaqada qaaiaaicdacaGGUaGaaGimaiaacYcacaWGKbWaaSbaaSqaaiaadMea aeqaaaGccaGLOaGaayzkaaaabaGaamizaaaaaiaawIcacaGLPaaada ahaaWcbeqaaiaaikdacqaHXoqyaaGcdaqadaqaamaalaaabaGaaGym aaqaaiaadEfadaWgaaWcbaGaamysaaqabaaaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacqaHXoqyaaaakiaawUfacaGLDbaadaahaaWcbeqa aiabgkHiTmaalaaabaGaaGymaaqaaiabeg7aHbaaaaaaaa@6FFF@
  • If MMXFM field is set to 2 (BK form):
    The value of G c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGJbaabeaaaaa@37D3@ is:(24) G n c + G s c G n c G s G T η = G c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaad6gacaWGJbaapaqabaGcpeGaey4k aSYaaeWaa8aabaWdbiaadEeapaWaaSbaaSqaa8qacaWGZbGaam4yaa WdaeqaaOWdbiabgkHiTiaadEeapaWaaSbaaSqaa8qacaWGUbGaam4y aaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qadaWcaaWdae aapeGaam4ra8aadaWgaaWcbaWdbiaadohaa8aabeaaaOqaa8qacaWG hbWdamaaBaaaleaapeGaamivaaWdaeqaaaaaaOWdbiaawIcacaGLPa aapaWaaWbaaSqabeaapeGaeq4TdGgaaOGaeyypa0Jaam4ra8aadaWg aaWcbaWdbiaadogaa8aabeaaaaa@4E14@
    Where,
    η MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aObaa@3795@
    ALPHA field on DMGEVO entry.
    G n c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaad6gacaWGJbaapaqabaaaaa@390A@ and G s c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadohacaWGJbaapaqabaaaaa@390F@
    W1 and W2 fields on the DMGEVO entry.

    G T = G n + G s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadsfaa8aabeaakiabg2da98qacaWG hbWdamaaBaaaleaacaWGUbaabeaakiabgUcaR8qacaWGhbWdamaaBa aaleaacaWGZbaabeaaaaa@3E1D@ is the total energy (area under the curve) until the current solution step.

Calculating Actual Traction

Actual traction is calculated as follows, based on the damage evolution index calculation described in the previous section.

When DMGEVO is referenced by MCOHED, the traction in cohesive elements is calculated based on the damage evolution index, D MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@36BD@ .(25) T i =( 1D ) k i d i t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpdaqa daWdaeaapeGaaGymaiabgkHiTiaadseaaiaawIcacaGLPaaacaWGRb WdamaaBaaaleaapeGaamyAaaWdaeqaaOWaaSaaaeaapeGaamiza8aa daWgaaWcbaWdbiaadMgaa8aabeaaaOqaaiaadshadaWgaaWcbaGaaG imaaqabaaaaaaa@43E2@

i = I ,   II ,   III MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabg2da9iaadIhacaGGSaGaaiiOaiaadMhacaGGSaGaaiiO aiaadQhaaaa@3E9F@

Where,
k i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3841@ and d i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa Wcbaaeaaaaaaaaa8qacaWGPbaapaqabaaaaa@381B@
The elasticity modulus and opening corresponding to Mode i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@36BD@ .
t 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIWaaabeaaaaa@37D3@
Thickness defined in the PCOHE entry.

This actual traction is then subsequently used for the solution.

Cohesive Element Erosion

When damage evoluation index of all integration points in a cohesive element reaches the value defined on the MXDMG field in MCOHED card, and none of these integration points is in compression, the cohesive element is eroded and does not work in the rest of the analysis in the current subcase and the continued subcases.

Modeling Techniques

There are currently two techniques to activate adhesion/bonding and simulate the cohesive behavior at the corresponding interfaces:
  • Element-based technique (CIFHEX/CIFPEN elements)
  • Contact-based technique (CONTACT entry)

Element-based Technique (CIFHEX and CIFPEN elements)

The definition of cohesive elements (CIFHEX and CIFPEN) can be used For the Traction-Opening Curves method and the Damage Models method. The formulation of these two cohesive elements are as follows:
  • The main focus of the CIFHEX and CIFPEN elements is the relative movement between the top and bottom faces.
  • The relative displacement between the nodes of the top and bottom faces at each integration point in each of the three directions (elemental X, Y, Z) determines the cohesive opening.


    Figure 6.
  • Traction provides the tensile and shear stiffness and SFC field on the PCOHE entry identifies the compressive stiffness for cohesive elements.
    Note: Traction calculation depends on the method used for adhesive/bonded interface modeling.
  • Refer to Interface Elements for more information on the cohesive element formulation.
The recommendations to define cohesive elements:
  • Cohesive elements should be inserted in the path of crack propagation.
  • For potential-based method, only a single layer of cohesive elements should be used.
  • For damage-based method, multiple layers of cohesive elements can be used.
  • CIFHEX and CIFPEN elements are available for modeling cohesive elements.
  • Cohesive elements can only be connected to shell or solid elements of the base model.
  • If one-to-one nodal correspondence exists along with exactly the same mesh density between the cohesive element layer and the shell/solid connecting layer of the base model, then the nodes can be shared (equivalenced) and no contact definition is required.
  • If such an exact one-to-one nodal correspondence does not exist, the CONTACT(FREEZE) or TIE connection should be used to connect the cohesive elements on either top/bottom layer to the corresponding shell/solid elements of the base model.
  • Cohesive elements may have a geometrical thickness in the interface. For the potential-based method, unit thickness is internally used automatically, regardless of the geometric thickness and thus, the thickness effect is excluded. For the damage-based method, the THICKNESS field on PCOHE can be used to control the thickness interpretation. It is important to use realistic value. The default value is set to 1.0.
  • In some cases, it may be difficult to obtain convergence with cohesive elements. Damping stabilization can be introduced in the cohesive elements to help convergence. The damping stabilization can be defined by VED on MCOHE and MCOHED entries. Damping stabilization is currently not available in cohesive contact.

Contact-Based Technique (CONTACT entry)

The contact-based technique does not require the use of cohesive elements (CIFHEX/CIFPEN) to model the cohesive zone. This technique allows simplification of the model setup, as it eliminates the need to mesh and setup the cohesive elements.

The COHE continuation line on the CONTACT Bulk Data Entry can be used to activate the contact-based method for Cohesive Zone Modeling. The MCOHEDID field references the MCOHED identification number and; therefore, identifies the contact interface as an adhesive/bonded interface.

Only damage-based method is available for contact-based technique. Also, the thickness of the cohesive zone is internally always set to unit for this technique. Thus, the thickness effect is excluded.

Contact penalty is used to avoid penetration in compression in opening cohesive effects are activated and contact effects are ignored

The COHEGSET field on the COHE continuation line defines the initial configuration of the contact interface.
Note: This only applies to the initial state of the analysis and as the analysis progresses, the contact definition varies normally as with any nonlinear analysis.

Currently only SMALL sliding, frictionless, N2S/S2S contact is supported for cohesive modeling.

Supported Solution Sequences

Cohesive elements are currently supported for the following solutions:
  • Nonlinear Static Analysis (SMDISP and LGDISP)
  • Nonlinear Transient Analysis (SMDISP and LGDISP)
    • Mass is not considered in cohesive elements.
  • Linear analysis, including static, transient, buckling, and eigen mode analysis
    • Cohesive effects are not available for linear analysis.
    • The initial stiffness of cohesive elements is used in linear analysis. The initial stiffness is determined by the MCOHE or MCOHED entry (the initial slope of the traction-opening curve defined in MCOHE entry or the Ki value defined in the MCOHED entry.
    • There is no crack propagation/initiation.
    • There are no cohesive elements related output for Linear Analysis.
  • Cohesive elements are currently only supported for Implicit Analysis. Explicit Analysis is not supported.

Output

Output from the cohesive zone is currently only available in H3D format.

The following results are specifically output for cohesive zones:
  • Cohesive Damage Initiation Index
    • This item is shown in cohesive elements and secondary surface of the cohesive contact.
  • Cohesive Damage Index (Damage Evolution Index)
    • This item is shown in cohesive elements and secondary surface of the cohesive contact.
  • Cohesive Energy by Mode (Dissipated Cohesive Energy by Mode)
    • Cohesive Energy is output in terms of 3 modes (Mode I, II, and III)
    • This item is not available in cohesive contact
  • Cohesive Energy per Area by Mode (Dissipated Cohesive Energy per Area by Mode)
    • Cohesive Energy per area is output in terms of 3 modes (Mode I, II, and III)
    • This item is not available in cohesive contact
  • Cohesive Maximum Opening in History (Maximum Opening)
    • This is the maximum relative displacement in history.
    • This item is not available in cohesive contact.
  • Cohesive Opening(s)
    • This provides the output for relative displacement in the local elemental system (Mode I, II, and III) and the basic system.
  • Cohesive Status (Status)
    • Indicates element loading/unloading/fail state
    • 0: Loading
    • 1: Unloading/Reloading
    • 2: Fail
  • Cohesive Traction (Traction)
    • This provides the output for traction in the local elemental system (Mode I, II, and III) and the basic system.

Eroded cohesive elements are not shown in h3d output starting from the eroded analysis time of the element. Therefore, the above items are not available in eroded cohesive elements.

When contacts are used to model the cohesive zone, the output is interpreted in the following way. Cohesive traction and cohesive opening are listed in label ‘Contact Traction / Normal’, ‘Contact Traction / Tangent’, ‘Contact Deformation / Normal’ and ‘Contact Deformation/Tangent.’ In order to keep it consistent with contact pressure, cohesive normal traction is shown as negative value in ‘Contact Traction / Normal.’