/MAT/LAW109
Block Format Keyword Elasto-plastic material with isotropic von Mises yield criterion with plastic strain rate and temperature depending nonlinear hardening.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW109/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
E | ν | ||||||||
Cp | Tref | T0 | |||||||
tab_ID_h | tab_ID_t | Xscale_h | Yscale_h | Ismooth | |||||
tab_ID_ | Xscale_ |
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier. (Integer, maximum 10 digits) |
|
unit_ID | (Optional) Unit Identifier. (Integer, maximum 10 digits) |
|
mat_title | Material title. (Character, maximum 100 characters) |
|
Initial density. (Real) |
||
E | Young’s modulus. (Real) |
|
ν | Poisson’s ratio. (Real) |
|
Ismooth | Choice of yield function interpolation versus strain rate.
(Integer) |
|
Cp | Specific heat. (Real) |
|
Tref | Reference temperature. Default = 293K (Real) |
|
T0 | Initial temperature. Default = Tref (Real) |
|
Taylor-Quinney coefficient (fraction of plastic work
converted to heat). Value between 0.0 and
1.0. (Real) |
||
tab_ID_ | (Optional) Table identifier defining scale factor for
depending on strain rate, temperature, and plastic strain.
Value between 0.0 and 1.0. (Integer Id) |
|
tab_ID_h | Table identifier for yield stress depending on effective
plastic strain and strain rate. (Integer) |
|
Xscale_ | Abscissa scale factor (strain rate) for
tab_ID_
. Default = 1.0 (Real) |
|
Xscale_h | Abscissa scale factor (strain rate) for
tab_ID_h. Default = 1.0 (Real) |
|
Yscale_h | Scale factor for ordinate (stress) for
tab_ID_h. Default = 1.0 (Real) |
|
tab_ID_t | Table identifier for quasi-static yield stress depending on
effective plastic strain and temperature. (Integer Id) |
Example (Aluminum)
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/2275
unit_Mg_mm_s
Mg mm s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW109/18/2275
Aluminium
# Init. dens.
7.8E-9
# E Nu
70000.0 .3
# CP Eta Tref Tini
0.45E9 0.95 293.0 293.0
# Tab_Yld Tab_Temp Xscale Yscale Ismooth
25 26 1.0 1.0 1
# tab_eta xcsale_eta
34 0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/TABLE/1/25
Yld Functions : plastic strain + strain rate dependency
#DIMENSION
2
# FCT_ID X Scale_y
2 0.0 1.0
2 100000.0 1.35
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/TABLE/1/26
Yld Functions (quasistatic): plastic strain + temperature dependency
#DIMENSION
2
# FCT_ID X Scale_y
2 293.0 1.00
2 1000.0 0.70
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/TABLE/1/34
taylor-quinney coef = f(strain rate, temp)
#DIMENSION
2
# FCT_ID X Scale_y
35 239 1.0
35 1000 0.9
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/35
taylor-quinney factor = f(strain.rate)
# X Y
0.000 0
0.002 0
0.04 1
1000000.0 1
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/2
ALU Stress-strain
0.00000 310.0
9.3E-04 330.8
1.1E-03 334.5
2.1E-03 339.9
2.6E-03 340.9
3.3E-03 342.3
6.1E-03 344.7
7.8E-03 346.0
9.1E-03 347.1
1.0E-02 348.7
1.2E-02 350.7
1.4E-02 352.6
1.6E-02 354.0
1.8E-02 356.5
2.0E-02 358.7
3.0E-02 369.0
3.5E-02 373.5
1.0 410.0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Comments
- Yield criterion using isotropic von Mises equivalent stress:
(1) - Yield stress hardening defined by tabulated input as:
(2) Where,- Function table of yield stresses depending on plastic strain and plastic strain rate.
- Table ID of quasi-static yield function depending on plastic strain and temperature.
- Reference temperature. Corresponds to conditions during experimental tests.
- In adiabatic conditions, the temperature is updated using:
(3) Where, is the constant Taylor-Quinney coefficient which may be modified by introducing scalar factor defined by function .
Otherwise, if /HEAT/MAT is present in the model, the temperature is imposed on all elements and cannot be updated using Equation 3.
Function may be one dimensional, two-dimensional, or three-dimensional, but the first abscissa is always strain rate and the second one may be only the temperature.