/MAT/LAW18 (THERM)
Block Format Keyword This law describes thermal material.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW18/mat_ID or /MAT/THERM/mat_ID | |||||||||
mat_title | |||||||||
ρi | ρ0 | ||||||||
ρ 0Cp | A | B | |||||||
fct_IDT | T0 | FscaleT | |||||||
fct_IDsph | fct_IDas | Fscalesph | FscaleE | FscaleK |
Definitions
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material
identifier (Integer, maximum 10 digits) |
|
mat_title | Material
title (Character, maximum 100 characters) |
|
ρi | Initial
density (Real) |
[kgm3] |
ρ0 | Reference density used in
E.O.S (equation of state). Default ρ0 = ρi (Real) |
[kgm3] |
ρ 0Cp | Specific
heat (Real) |
[kgs3⋅m⋅K] |
A | Conductivity coefficient
A (Real) |
[Wm2K] |
B | Conductivity coefficient
B (Real) |
|
fct_IDT | Function
f(t) identifier for T. 9
(Integer) |
|
T0 | Initial
temperature Default = 300K (Real) |
[K] |
FscaleT | Time scale
factor (Real) |
|
fct_IDsph | Function g(T, E)
identifier for temperature versus energy. 7 (Integer) |
|
fct_IDas | Function h(k, T)
identifier for conductivity versus
temperature. (Integer) |
|
Fscalesph | Temperature scale
factor. (Real) |
[K] |
FscaleE | Energy scale
factor. (Real) |
[J] |
FscaleK | Conductivity scale
factor. (Real) |
[Wm2K] |
Comments
- This material can be used:
- as purely thermal material (only Line 4 is read)
- as boundaries conditions (temperature or flux) (use Line 5)
- The
k
(thermal conductivity) is computed
as:
(1) k=A+B⋅T - The α (thermal diffusivity) is computed as:
(2) α=k/ρ0CpWhere, Cp is the heat capacity at constant pressure.
- The k (thermal conductivity) is given by curve fct_IDas=k(T) .
- The α (thermal diffusivity) is computed with curve fct_IDsph α=k/ρ0Cp with, dEdT=Cp .
- Function g(T, E) is similar to
the following curve:Figure 1.
- If
fct_IDsph ≠
0,
(3) Especific=Eintρ0FscaleET=fsph(Especific)⋅Fscalesph
Where, fsph is the function of fct_IDsph.
- If
fct_IDsph =
0,
(4) T=Eintsphwith Sph=ρ0Cp=SpecificHeat
- If
fct_IDT ≠
0,
(5) T=f(Time)⋅T0with Time=Time⋅FscaleT ; Eint=T⋅sph .
- If
fct_IDas ≠ 0,
(6) T=TFscalesphA=fas(T)⋅FscaleE ; B=0
Where, fas is the function of fct_IDas.