Loading [MathJax]/jax/output/CommonHTML/jax.js

/MAT/LAW18 (THERM)

Block Format Keyword This law describes thermal material.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW18/mat_ID or /MAT/THERM/mat_ID
mat_title
ρi ρ0            
ρ0Cp A B        
fct_IDT T0 FscaleT          
fct_IDsph fct_IDas Fscalesph FscaleE FscaleK    

Definitions

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
mat_title Material title

(Character, maximum 100 characters)

 
ρi Initial density

(Real)

[kgm3]
ρ0 Reference density used in E.O.S (equation of state).

Default ρ0 = ρi (Real)

[kgm3]
ρ0Cp Specific heat

(Real)

[kgs3mK]
A Conductivity coefficient A

(Real)

[Wm2K]
B Conductivity coefficient B

(Real)

 
fct_IDT Function f(t) identifier for T. 9
= 0
T is computed
= n
T=T0f(t)

(Integer)

 
T0 Initial temperature

Default = 300K (Real)

[K]
FscaleT Time scale factor

(Real)

 
fct_IDsph Function g(T, E) identifier for temperature versus energy. 7

(Integer)

 
fct_IDas Function h(k, T) identifier for conductivity versus temperature.

(Integer)

 
Fscalesph Temperature scale factor.

(Real)

[K]
FscaleE Energy scale factor.

(Real)

[J]
FscaleK Conductivity scale factor.

(Real)

[Wm2K]

Comments

  1. This material can be used:
    • as purely thermal material (only Line 4 is read)
    • as boundaries conditions (temperature or flux) (use Line 5)
  2. The k (thermal conductivity) is computed as:(1)
    k=A+BT
  3. The α (thermal diffusivity) is computed as:(2)
    α=k/ρ0Cp

    Where, Cp is the heat capacity at constant pressure.

  4. The k (thermal conductivity) is given by curve fct_IDas=k(T) .
  5. The α (thermal diffusivity) is computed with curve fct_IDsph α=k/ρ0Cp with, dEdT=Cp .
  6. Function g(T, E) is similar to the following curve:

    Image15
    Figure 1.
  7. If fct_IDsph ≠ 0,(3)
    Especific=Eintρ0FscaleE

    T=fsph(Especific)Fscalesph

    Where, fsph is the function of fct_IDsph.

  8. If fct_IDsph = 0,(4)
    T=Eintsph

    with Sph=ρ0Cp=SpecificHeat

  9. If fct_IDT ≠ 0,(5)
    T=f(Time)T0

    with Time=TimeFscaleT ; Eint=Tsph .

  10. If fct_IDas ≠ 0,
    (6)
    T=TFscalesph

    A=fas(T)FscaleE ; B=0

    Where, fas is the function of fct_IDas.