/VISC/PRONY

Block Format Keyword This is an isotropic visco-elastic Maxwell model that can be used to add visco-elasticity to certain shell and solid element material models. The visco-elasticity is input using a Prony series.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/VISC/PRONY/mat_ID/unit_ID
M   Kv MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaSbaaSqaaiaadAhaaeqaaaaa@3855@ Itab Ishape        
If Itab = 0, ready only if M > 0, each pair of shear relaxation and shear decay per line
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Gi MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBaaaleaacaWGPbaabeaaaaa@37DE@ βi MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHYoGydaWgaaWcbaGaamyAaaqabaaaaa@3A23@ Ki MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBaaaleaacaWGPbaabeaaaaa@37DE@ βki MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHYoGydaWgaaWcbaGaam4AaiaadMgaaeqaaaaa@3B13@    
If Itab = 1,
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Ifunc_G XGscale YGscale          
Ifunc_K XKscale YKscale          
If Itab = 2,
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Ifunc_Gs XGs_scale YGs_scale          
Ifunc_Gl XGl_scale YGl_scale          
Ifunc_Ks XKs_scale YKs_scale          
Ifunc_Kl XKl_scale YKl_scale          

Definitions

Field Contents SI Unit Example
mat_ID Material identifier which refers to the viscosity card

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
M Maxwell model order (number of Prony coefficients).

Default = 0 (Integer)

 
Kv MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaSbaaSqaaiaadAhaaeqaaaaa@3855@ Viscous bulk modulus. 3 Only used if Ki=0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBaaaleaacaWGPbaabeaakiabg2da9iaaicdaaaa@39A8@ .

Default = 0. (Real)

[Pas]
Itab Tabulated formulation flag
= 0 (Default)
No tabulated functions
= 1
Relaxation test tabulated functions
= 2
DMA tests tabulated functions

(Integer)

 
Ishape Tabulated Prony series shape flag (Only if Itab0)
= 0
Classic shape of Prony series
= 1
Infinite value shape

(Integer)

 
Gi MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBaaaleaacaWGPbaabeaaaaa@37DE@ Shear relaxation modulus for ith term (i=1, M).

(Real)

[Pa]

[s]

βi MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHYoGydaWgaaWcbaGaamyAaaqabaaaaa@3A23@ Decay shear constant for ith term (i=1, M).

(Real)

[1s]
Ki MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBaaaleaacaWGPbaabeaaaaa@37DE@ Bulk relaxation modulus for ith term (i=1, M). 3

(Real)

[Pa]
βki MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHYoGydaWgaaWcbaGaam4AaiaadMgaaeqaaaaa@3B13@ Decay bulk constant for ith term (i=1, M).

(Real)

[1s]
Ifunc_G Relaxation test data curve for shear modulus.

(Integer)

 
XGscale Time scale factor for shear modulus relaxation test data curve.

Default = 1.0 (Real)

[s]
YGscale Scale factor for shear modulus relaxation test data curve.

Default = 1.0 (Real)

[Pa]
Ifunc_K Relaxation test data curve for bulk modulus.

(Integer)

 
XKscale Time scale factor for bulk modulus relaxation test data curve.

Default = 1.0 (Real)

[s]
YKscale Scale factor for bulk modulus relaxation test data curve.

Default = 1.0 (Real)

[Pa]
Ifunc_Gs Shear storage modulus data curve.

(Integer)

 
XGs_scale Frequency scale factor for shear storage modulus test data curve.

Default = 1.0 (Real)

[Hz]
YGs_Scale Scale factor for shear storage modulus test data curve.

Default = 1.0 (Real)

[Pa]
Ifunc_Gl Shear loss modulus data curve.

(Integer)

 
XGl_scale Frequency scale factor for shear loss modulus test data curve.

Default = 1.0 (Real)

[Hz]
YGl_Scale Scale factor for shear loss modulus test data curve.

Default = 1.0 (Real)

[Pa]
Ifunc_Ks Bulk storage modulus data curve.

(Integer)

 
XKs_scale Frequency scale factor for bulk storage modulus test data curve.

Default = 1.0 (Real)

[Hz]
YKs_scale Scale factor for bulk storage modulus test data curve.

Default = 1.0 (Real)

[Pa]
Ifunc_Kl Bulk loss modulus data curve.

(Integer)

 
XKl_scale Frequency scale factor for bulk loss modulus test data curve.

Default = 1.0 (Real)

[Hz]
YKl_scale Scale factor for bulk loss modulus test data curve.

Default = 1.0 (Real)

[Pa]

Comments

  1. For shell elements this model is available with /MAT/LAW66 and /MAT/LAW25 (COMPSH).

    For solid elements it is available with material laws /MAT/LAW38 (VISC_TAB), /MAT/LAW42 (OGDEN), /MAT/LAW69, /MAT/LAW70 (FOAM_TAB), /MAT/LAW82, /MAT/LAW88, /MAT/LAW90, /MAT/LAW92, /MAT/LAW103 (HENSEL-SPITTEL), and /MAT/LAW106 (JCOOK_ALM).

  2. The viscosity effect is taken into account by using a Prony series. The deviatoric viscous stress is given by the convolution integral of the form:(1)
    Sij=0t2G(ts)dev[εij]sds
    with(2)
    G(t)=i=1MGieβit

    and dev[εij] denotes the deviatoric part of strain tensor.

    Shear decay:(3)
    βi=(1τi)

    Where, τi is the relaxation time.

  3. For the viscous pressure, two formulations are available:
    • If the bulk relaxation modulus is Ki>0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaSbaaSqaaiaadMgaaeqaaOGaeyOpa4JaaGimaaaa@3A14@ , the viscous pressure is computed as:(4)
      P=0tK(s)ε˙volds MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaeyypa0JaeyOeI0Yaa8qmaeaacaWGlbWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGafqyTduMbaiaadaWgaaWcbaGaamODaiaad+gacaWGSbaabeaaaeaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamizaiaadohaaaa@46EF@

      with ε˙vol=trace(ε˙)=ε˙xx+ε˙yy+ε˙zz MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacuaH1oqzgaGaamaaBaaaleaacaWG2bGaam4BaiaadYgaaeqaaOGaeyypa0JaamiDaiaadkhacaWGHbGaam4yaiaadwgadaqadaqaaiqbew7aLzaacaaacaGLOaGaayzkaaGaeyypa0JafqyTduMbaiaadaWgaaWcbaGaamiEaiaadIhaaeqaaOGaey4kaSIafqyTduMbaiaadaWgaaWcbaGaamyEaiaadMhaaeqaaOGaey4kaSIafqyTduMbaiaadaWgaaWcbaGaamOEaiaadQhaaeqaaaaa@5271@ and K(t)=1MKieβkit MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0ZaaabmaeaacaWGlbWaaSbaaSqaaiaadMgaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaeqOSdi2aaSbaaWqaaiaadUgacaWGPbaabeaaliaadshaaaaabaGaaGymaaqaaiaad2eaa0GaeyyeIuoaaaa@46E2@

    • If the bulk relaxation modulus is Ki=0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaaGimaaaa@3A12@ and the viscous bulk modulus Kν>0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBaaaleaacqaH9oGBaeqaaOGaeyOpa4JaaGimaaaa@3A76@ , the viscous pressure is computed as:(5)
      P=Kvε˙vol MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaeyypa0JaeyOeI0Iaam4samaaBaaaleaacaWG2baabeaakiqbew7aLzaacaWaaSbaaSqaaiaadAhacaWGVbGaamiBaaqabaaaaa@3FE3@
  4. Starting with Radioss version 2017, identical results are obtained using the same Prony coefficents Gi in /VISC/PRONY and viscoelastic materials /MAT/LAW34 (BOLTZMAN), /MAT/LAW40 (KELVINMAX), and /MAT/LAW42 (OGDEN). In previous Radioss versions, 2 Gi had to be input into /VISC/PRONY to get equivalent results.
  5. Prony series parameters can be automatically fit from test data using the flag Itab:
    • If Itab = 1, prony series parameters are fitted from relaxation tests data, i.e moduli versus time curves.


      Figure 1. Example of Prony series fitting on shear modulus relaxation test data
    • If Itab = 2, Prony series parameters are fitted from Dynamic Mechanical Analysis (DMA) tests data, i.e storage and loss moduli versus frequency curves.


      Figure 2. Example of Prony series fitting on shear storage and loss modulus DMA test data. data taken from [Tapia-Romero et al.,2020]
    In both cases, an automatic least-square fit is realized to find the parameters ( Gi,βi,Ki,βki MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaSqaaiaadMgaaeqaaOGaaiilaiabek7aInaaBaaaleaacaWGPbaabeaakiaacYcacaWGlbWaaSbaaSqaaiaadMgaaeqaaOGaaiilaiabek7aInaaBaaaleaacaWGRbGaamyAaaqabaaaaa@42C2@ ) in agreement with the order M of the Prony series defined by you. It is highly recommended to start with a small order and then increase it if the precision of the fitted curve is not sufficient.
    Note: The convergence of the least square fit may be hard to achieve for very high orders.
  6. The shape of the fitted Prony series (only in case where Itab ≠ 0) can be chosen by you:
    • If Ishape = 0, the shape of the fitted Prony series are the same as the one given above, so as:(6)
      G(t)=i=1MGieβit MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbGaaiikaiaadshacaGGPaGaeyypa0ZaaabCaeaacaWGhbWaaSbaaSqaaiaadMgaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaeqOSdi2aaSbaaWqaaiaadMgaaeqaaSGaamiDaaaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad2eaa0GaeyyeIuoaaaa@47EE@
      and (7)
      K(t)=i=1MKieβkit MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaaiikaiaadshacaGGPaGaeyypa0ZaaabCaeaacaWGlbWaaSbaaSqaaiaadMgaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaeqOSdi2aaSbaaWqaaiaadUgacaWGPbaabeaaliaadshaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGnbaaniabggHiLdaaaa@48E6@
    • If Ishape = 1, the shape of the fitted Prony series is modified to consider the infinite values of the moduli, so as:(8)
      G(t)=G+i=1MGieβit MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbGaaiikaiaadshacaGGPaGaeyypa0Jaam4ramaaBaaaleaacqGHEisPaeqaaOGaey4kaSYaaabCaeaacaWGhbWaaSbaaSqaaiaadMgaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaeqOSdi2aaSbaaWqaaiaadMgaaeqaaSGaamiDaaaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad2eaa0GaeyyeIuoaaaa@4B43@
      and(9)
      K(t)=K+i=1MKieβkit MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaaiikaiaadshacaGGPaGaeyypa0Jaam4samaaBaaaleaacqGHEisPaeqaaOGaey4kaSYaaabCaeaacaWGlbWaaSbaaSqaaiaadMgaaeqaaOGaamyzamaaCaaaleqabaGaeyOeI0IaeqOSdi2aaSbaaWqaaiaadUgacaWGPbaabeaaliaadshaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGnbaaniabggHiLdaaaa@4C3F@
    Note: In this case, the infinite value of the moduli is taken as the last value of the relaxation test data curve if Itab = 1, or the first storage modulus value if Itab = 2.