/FAIL/HASHIN

Block Format Keyword Describes the Hashin failure model. This failure model is available for Shell and Solid.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/FAIL/HASHIN/mat_ID/unit_ID
Iform Ifail_sh Ifail_so ratio I_Dam Imod I_frwave ˙εmin˙εmin
σt1σt1 σt2σt2 σt3σt3 σc1σc1 σc2σc2
σcσc σf12σf12 σm12σm12 σm23σm23 σm13σm13
ϕϕ Sdel τmaxτmax ˙ε0˙ε0 Tcut
Insert, if I_frwave=2
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Soft                
Optional Line
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
fail_ID                  

Definition

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
Iform Formulation flag.
= 1 (Default)
Uni-directional lamina model.
= 2
Fabric lamina model.

(Integer)

 
Ifail_sh Shell failure flag.
= 1 (Default)
Shell is deleted, if damage is reached for one layer.
= 2
Shell is deleted, if failed layer > all layer * RATIO.
= 3
Shell is deleted, if all layers (except 1) have failed.

(Integer)

 
Ifail_so Solid failure flag.
= 1 (Default)
Solid is deleted, if damage is reached for one integration point of solid.
= 2
Solid is deleted, if failed int_point > all int_point * RATIO.
= 3
Solid is deleted, if all integration points (except 1) have failed.

(Integer)

 
ratio For Isolid=2 or Ifail_sh=2: the element will be deleted, if more than ratio of the layers (or integration points) have failed.

Default = 1.0 (Real)

 
I_Dam Damage calculation flag. 6
=1 (Default)
Only forces are reduced. The stress tensor is not damaged.
=2
Stress tensor is reduced (used before version 2018)

(Integer)

 
Imod Relaxation time calculation.
= 0 (Default)
Constant relaxation time.
= 1
Relaxation time is based on the timestep.

(Integer)

 
I_frwave Failure propagation flag between neighbor elements.
= 1 (Default)
Off, option is not used.
= 2
Element's rupture criteria is reduced by factor Soft when any neighbor element fails.

(Integer)

 
˙εmin˙εmin Low strain rate limit.

Default = 0.0 (Real)

[1s][1s]
σt1σt1 Longitudinal tensile strength (in fiber direction).

Default = 1020 (Real)

[Pa][Pa]
σt2σt2 Transverse tensile strength (perpendicular to the fiber direction).

Default = 1020 (Real)

[Pa][Pa]
σt3σt3 Through thickness tensile strength.

Default = 1020 (Real)

[Pa][Pa]
σc1σc1 Longitudinal compressive strength (in fiber direction).

Default = 1020 (Real)

[Pa][Pa]
σc2σc2 Transverse compressive strength (perpendicular to the fiber direction).

Default = 1020 (Real)

[Pa][Pa]
σcσc Crush strength.

Default = 1020 (Real)

[Pa][Pa]
σf12σf12 Fiber shear strength.

Default = 1020 (Real)

[Pa][Pa]
σm12σm12 Matrix shear strength 12.

Default = 1020 (Real)

[Pa][Pa]
σm23σm23 Matrix shear strength 23.

Default = 1020 (Real)

[Pa][Pa]
σm13σm13 Matrix shear strength 13.

Default = 1020 (Real)

[Pa][Pa]
ϕϕ Coulomb friction Angle for matrix and delamination < 90 degrees.

Default = 0 (Real)

[deg][deg]
Sdel Delamination criteria scale factor.

Default = 1.0 (Real)

 
τmaxτmax Dynamic time relaxation. 5

Default = 1020 (Real)

[s][s]
˙ε0˙ε0 Reference strain rate.

Default = 10-20 (Real)

[1s][1s]
Tcut Strain rate cutoff period.

Default = τmaxτmax (Real)

[s][s]
Soft Reduction factor applied to failure criteria when one of neighbor elements has already failed.

Only used if, I_frwave=2.

0.0. ≤ Soft ≤ 1.0

Default = 0.0 (Real)

 
fail_ID (Optional) Failure criteria identifer. 4

(Integer, maximum 10 digits)

 

Example (Composite)

Comments

  1. Example of ratio: if ratio=0.5, and Ifail_sh=2 (or Ifail_so=2), the element will be deleted, if more than half of the layers (or integration points) failed.
  2. The 3D material failure model:
    • Uni-directional lamina model:
      Tensile/shear fiber mode:(1)
      F1=(σ11σt1)2+(σ212+σ213σf122)F1=(σ11σt1)2+(σ212+σ213σf122)
      Compression fiber mode: (2)
      F2=(σaσc1)2F2=(σaσc1)2

      with, σa=σ11+σ22+σ332σa=σ11+σ22+σ332

      Crush mode:(3)
      F3=(pσc)2F3=(pσc)2

      with, p=σ11+σ22+σ333p=σ11+σ22+σ333

      Failure matrix mode:(4)
      F4=(σ22σt2)2+(σ23S23)2+(σ12S12)2F4=(σ22σt2)2+(σ23S23)2+(σ12S12)2
      Delamination mode:(5)
      F5=S2del[(σ33σt2)2+(σ23˜S23)2+(σ13S13)2]F5=S2del(σ33σt2)2+(σ23˜S23)2+(σ13S13)2

      Where,

      S12=σm12+σ22tanϕS23=σm23+σ22tanϕS13=σm13+σ33tanϕ˜S23=σm23+σ33tanϕ

      Note: (6)
      a={aifa>00ifa<0
    • Fabric lamina model:
      Tensile/shear fiber mode:(7)
      F1=(σ11σt1)2+(σ212+σ213σfa2)
      (8)
      F2=(σ22σt2)2+(σ212+σ223σfb2)

      With σfa=σf12,σfb=σf12σt2σt1

      Compression fiber mode:(9)
      F3=(σaσc1)2
      with, σa=σ11+σ33 (10)
      F4=(σbσc2)2

      with, σb=σ22+σ33

      Crush mode:(11)
      F5=(pσc)2

      with, p=σ11+σ22+σ333

      Shear failure matrix mode:(12)
      F6=(σ12σm12)2
      Matrix failure mode:(13)
      F7=S2del[(σ33σt3)2+(σ23S23)2+(σ13S13)2]

      Where,

      S13=σm13+σ33tanϕS23=σm23+σ33tanϕ

      If the damage parameter is Fi ≥ 1.0, the stresses are decreased by using an exponential function to avoid numerical instabilities. A relaxation technique is used by decreasing the stress gradually:(14)
      σ(t)=f(t)σd(tr)
      With, (15)
      f(t)=exp(ttrτmax)

      and ttr

      Where,
      t
      Time
      tr
      Start time of relaxation when the damage criteria is assumed
      τmax
      Time of dynamic relaxation
      σd(tr)
      Stress at the beginning of damage
  3. The damage value, D is 0 ≤ D ≤ 1. The status for fracture is:
    • Free, if 0 ≤ D > 1
    • Failure, if D=1

    with D=Max(F1,F2,F3,F4,F5) for uni-directional lamina model and D=Max(F1,F2,F3,F4,F5,F6,F7) for fabric lamina model. This damage value shows with /ANIM/BRICK/DAMA or /ANIM/SHELL/DAMA.

  4. The fail_ID is used with /STATE/BRICK/FAIL and /INIBRI/FAIL. There is no default value. If the line is blank, no value will be output for failure model variables in the /INIBRI/FAIL (written in .sta file with /STATE/BRICK/FAIL option).
  5. After the failure criterion is reached, the τmax value determines a period of time when the stress in the failed element is gradually reduced to zero. When the stress reaches 1% of the stress value at the start of failure, the element is deleted. This is necessary to avoid instabilities coming from a sudden element deletion and a failure “chain reaction” in the neighboring elements. Even if the failure criterion is reached, the default value of τmax=1.0E30 results in no element deletion. Therefore, it is recommended to define τmax 10 times larger than the simulation time step.
  6. The I_Dam option improves damage calculation and stability calculating damage.
1
Hashin, Z., and Rotem, A., "A Fatigue Criterion for Fiber-Reinforced Materials," Journal of Composite Materials, Vol. 7, 1973, pp. 448-464. 9
2
Hashin, Z., "Failure Criteria for Unidirectional Fiber Composites," Journal of Applied Mechanics, Vol. 47, 1980, pp. 329-334.