/INIBRI/STRS_FGLO

Block Format Keyword Describes the initial state (full stress in global system, values for each integration point) for a brick.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/INIBRI/STRS_FGLO/unit_ID
If STRS_FGLO and 8 node solid element with 1 or 8 integration points.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
brick_ID Nb_integr Isolnod Isolid nptr npts nptt nlay grbric_ID  
For each integration point (Nb_integr > 0)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Eint ρ            
σ 1 σ 2 σ 3        
σ 12 σ 23 σ 31        
ε p                
If STRS_FGLO and 16-node or 20-node solid elements, 8-node HA8 element; 8-node HSEPH elements, 6-node PA6 elements; 10-node tetrahedron or Pentahedron 6-nodes.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
brick_ID Nb_integr Isolnod Isolid nptr npts nptt nlay grbric_ID  
For each integration point (Nb_integr > 0)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
σ 1 σ 2 σ 3        
σ 12 σ 23 σ 31        
ε p Eint ρ        

Definitions

Field Contents SI Unit Example
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
brick_ID Element identifier. Ignored if grbric_ID is defined.

(Integer)

 
Nb_integr Number of integration points.

Corresponds to the property definition of this element.

(Integer)

 
Isolnod Number of nodes of solid element.

(Integer)

 
Isolid Solid element formulation.

Corresponds to the solid element formulation in property definition of this element.

(Integer)

 
nptr Number of integration points in direction r.

(Integer)

 
npts Number of integration points in direction s.

(Integer)

 
nptt Number of integration points in direction t.

(Integer)

 
nlay Number of layers for thick shell elements.

(Integer)

 
grbric_ID Brick group identifier. 4

(Integer)

 
ε p Plastic strain.

(Real)

 
σ 1 Stress in direction 1.

(Real)

 
σ 2 Stress in direction 2.

(Real)

 
σ 3 Stress in direction 3.

(Real)

 
σ 12 Shear stress in direction 12.

(Real)

 
σ 23 Shear stress in direction 23.

(Real)

 
σ 31 Shear stress in direction 31.

(Real)

 
Eint Internal energy of solid element.

(Real)

 
ρ Volumetric mass.

(Real)

 

Comments

  1. The initial state for brick may be defined by more than one block.
  2. If Nb_integr > 1, the optional continuation lines must be repeated for each integration point, if Keyword2 = STRS_FGLO and 8-node solid element with 1 or 8 integration point.

    Format Line 4; Format Line 5; Format Line 6

  3. If Nb_integr > 1, the optional continuation lines have to be repeated for each integration point, if Keyword2 = STRS_FGLO and 16 or 20 node solid elements, 8 node HA8 elements, 8 node HSEPH elements, 6 node PA6 elements; 10 nodes tetrahedron or Pentahedron 6 nodes.

    Format Line 3; Format Line 4; Format Line 5

  4. Only one block of stress values needs to be defined when the elements are defined with the group of bricks grbric_ID. The values defined in the block will be applied to all elements in the group of bricks. All the elements defined in group of bricks must belong to the same part (/PART).
  5. Using /INIBRI/STRS_FGLO you are assuming there is no density of the deformed elements. Before the first cycle, Radioss will check consistency of the input stress tensor with material data (stiffness and density).(1)
    D = s 11 + s 22 + s 33 3 B u l k ( 1 ρ ρ 0 ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9maalaaabaGaam4CamaaBaaaleaacaaIXaGaaGymaaqabaGccqGH RaWkcaWGZbWaaSbaaSqaaiaaikdacaaIYaaabeaakiabgUcaRiaado hadaWgaaWcbaGaaG4maiaaiodaaeqaaaGcbaGaaG4maaaacqGHsisl caWGcbGaamyDaiaadYgacaWGRbGaeyyXIC9aaeWaaeaacaaIXaGaey OeI0YaaSaaaeaacqaHbpGCaeaacqaHbpGCdaWgaaWcbaGaaGimaaqa baaaaaGccaGLOaGaayzkaaGaeyypa0JaaGimaaaa@5293@
    Where,
    ρ 0
    Density defined in the Starter file.
    ρ
    Density in the state file.
    If the stress is not fulfilled, then Radioss will correct the diagonal entry of the stress tensor:(2)
    s i i n e w = s i i i n i t i a l D