/MAT/LAW62 (VISC_HYP)
Block Format Keyword This law describes the hyper visco-elastic material. This law is compatible with solid and shell elements. In general it is used to model polymers and elastomers.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW62/mat_ID/unit_ID or /MAT/VISC_HYP/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
N | M | Flag_Visc |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material
identifier. (Integer, maximum 10 digits) |
|
unit_ID | Unit Identifier. (Integer, maximum 10 digits) |
|
mat_title | Material
title. (Character, maximum 100 characters) |
|
Initial
density. (Real) |
||
Poisson's ratio. Default = 0.0 (Real) |
||
N | Law order - must be
positive. (Integer) |
|
M | Maxwell model order.
(Integer) |
|
Maximum
viscosity. Default = 1030 (Real) |
||
Flag_Visc | Viscous formulation flag,
used if M > 0.
|
|
ith parameter of the ground shear
modulus. (Real) |
||
ith material
parameter. (Real) |
||
ith stiffness
ratio. (Real) |
||
ith time
relaxation. (Real) |
Example (Hyper-elastic Rubber)
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
Mg mm s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW62/1/1
LAW62 RUBBER
# RHO_I
1E-9
# Nu N M mu_max Flag_Visc
.495 2 0 1000 1
# mu_i
2 1
# alpha_i
2 -2
# gamma_i
# tetha_i
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Comments
- Strain energy
W is computed using the following equation:
(1) With- are eigenvalue of F (F is deformation gradient matrix),
- J is Jacobian determinant, with ,
- N is the order of law,
-
and
are the material
parameters:
(2) - and
- is the Poisson's ratio.
- Coefficients (
) are used to describe rate effects through the
Maxwell model:
The initial shear modulus is:
(3) The sum of should be greater than 0.(4) The stiffness ratio is:(5) (6) With,(7) and(8) is the ground shear modulusThe relative time, must be positive:(9) - Rate effects are modeled using a convolution integral using Prony series. This is an extension of small strain theory to large strain. Strain rate effect applies only to the deviatoric stress. The full expression of the deviatoric viscous stress can be found in the Radioss Theory Manual.
- There are several differences between /MAT/LAW42 (OGDEN) and /MAT/LAW62. Special care should be taken that the ground shear modulus expression depending on input values is not the same. Also, it corresponds to the long-term shear modulus in one case, whereas to the initial shear modulus in another case.