FE geometry is topology on top of mesh, meaning CAD and mesh exist as a single entity. The purpose of FE geometry
is to add vertices, edges, surfaces, and solids on FE models which have no CAD geometry.
Open animation files, measure various distances and angles between entities, and use the Results Browser to view the model structure and find, display, and edit entities.
Advanced averaging means that tensor (or vector) results are transformed into a consistent system and then each component
is averaged separately to obtain an average tensor (or vector).
Max of corner averaging means that the maximum value from all the corners of an element are extracted and the value is
shown at the centroid of the element.
Min of corner averaging means that the minimum value from all the corners of an element are extracted and the value is
shown at the centroid of the element.
Extreme of corner averaging means that the extreme value from all the corners of an element are extracted and the value
is shown at the centroid of the element.
The averaging options allow you to limit the averaging of results to only a group of elements that are considered to be
bound by same feature angle or face.
The fatigue manager allows you to write stress and strain results from a finite element analysis to an external file that
can be used to set up a fatigue analysis.
The fatigue configuration file is a user-defined external ASCII-file through which the data groups from results of static/modal/transient analysis of different solvers can be read.
Create and edit user-defined data type expressions, derived load cases, and systems. You can also plot a forming limit
diagram, generate streamlines, track entities during animation, and create and import/export sets of entities.
Query entities, create or edit free body diagrams, construct multiple curves and plots from a single result file, and
create and plot stress linearization.
Min of corner averaging means that the minimum value from all the corners of an element are extracted and the value is
shown at the centroid of the element.
Min of corner averaging means that the minimum value from all the corners of an element
are extracted and the value is shown at the centroid of the element.
The tensor and vector components are extracted and the
invariants are computed for each corner prior to assigning to the element centroid. For result
components, the corresponding components from each corner is extracted and then the minimum
value is assigned to the element centroid. For invariants, the corresponding invariants are
calculated from each tensor at the element corners and then the minimum value is assigned at
the centroid.
For example, as shown in Nodal Averaging of Elemental Results, there are four
tensors at each corner of the element A: [A1], [A2], [A3], and [A4].
The min of corner
aggregation of the xx component at the Element A centroid is:
This averaging option is only available when the Use corner data option is
checked in the Contour or Iso panels.