/MAT/LAW27 (PLAS_BRIT)

Block Format Keyword This law combines an isotropic elasto-plastic Johnson-Cook material model with an orthotropic brittle failure model. Material damage is accounted for prior to failure. Failure and damage occur only in tension. This law is applicable only for shells.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW27/mat_ID/unit_ID or /MAT/PLAS_BRIT/mat_ID/unit_ID
mat_title
ρ i                
E ν            
a b n   σ max 0
c ε ˙ 0 ICC Fsmooth Fcut    
ε t 1 ε m 1 dmax1 ε f 1    
ε t 2 ε m 2 dmax2 ε f 2    

Definitions

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρ i Initial density.

(Real)

[ kg m 3 ]
E Young's modulus.

(Real)

[ Pa ]
ν Poisson's ratio.

(Real)

 
a Plasticity yield stress.

(Real)

[ Pa ]
b Plasticity hardening parameter.

(Real)

[ Pa ]
n Plasticity hardening exponent.

(Real)

 
σ max 0 Plasticity maximum stress.

Default = 1030 (Real)

[ Pa ]
c Strain rate coefficient.
= 0
No strain rate effect.

Default = 0.00 (Real)

 
ε ˙ 0 Reference strain rate.

If ε ˙ ε ˙ 0 , no strain rate effect.

(Real)

[ 1 s ]
ICC Strain rate computation flag. 4
= 0 (Default)
Set to 1.
= 1
Strain rate effect on σ max .
= 2
No strain rate effect on σ max .

(Integer)

 
Fsmooth Strain rate smoothing flag.
=0 (Default)
Not active.
=1
Active.

(Integer)

 
Fcut Cutoff frequency for strain rate smoothing. 5

Default = 1030 (Real)

[Hz]
ε t 1 Tensile failure strain at which stress starts to reduce in the principal strain direction 1. 6

Default = 1.0 x 1030 (Real)

 
ε m 1 Maximum tensile failure strain in principal strain direction 1 at which the stress in the element is set to a value dependent on dmax1. 6

Default = 1.1 x 1030 (Real)

 
dmax1 Maximum damage factor in principal strain direction 1. 6

Default = 0.999 (Real)

 
ε f 1 Maximum tensile strain for element deletion in principal strain direction 1. 6

Default = 1.2 x 1030 (Real)

 
ε t 2 Tensile failure strain at which stress starts to reduce in the principal strain direction 2.

Default = 1.0 x 1030 (Real)

 
ε m 2 Maximum tensile strain in principal strain direction 2 at which the stress in the element is set to a value dependent on dmax2.

Default = 1.1 x 1030 (Real)

 
dmax2 Maximum damage factor in principal strain direction 2. 6

Default = 0.999 (Real)

 
ε f 2 Maximum tensile strain for element deletion in principal strain direction 2.

Default = 1.2 x 1030 (Real)

 

Example (Aluminum)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  Mg                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/PLAS_BRIT/1/1
Aluminum
#              RHO_I
               .0027                   
#                  E                  NU
               60400                 .33
#                  a                   b                   n                                SIG_max0
              90.266              223.14                .375                                     177
#                  c           EPS_DOT_0       ICC   Fsmooth               F_cut 
                   0                   0         0         0                   0
#             EPS_t1              EPS_m1              d_max1              EPS_f1
                 .16                 .72                .999                   1
#             EPS_t2              EPS_m2              d_max2              EPS_f2
                   0                   0                   0                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. In this model, the material behaves as a linear-elastic material when the equivalent stress is lower than the plastic yield stress. For higher stress values, the material behavior is plastic and the stress is calculated as.(1)
    σ = ( a + b ε p n ) ( 1 + c ln ε ˙ ε ˙ 0 )
    Where,
    ε p
    Plastic strain
    ε ˙
    Strain rate

    The plasticity hardening exponent, n must be less than 1.

  2. This law allows the modeling of material damage and brittle failure in two principal directions (1 and 2).
  3. This law is only applicable to shell elements. It is compatible with Shell Property (/PROP/TYPE1) and Sandwich Shell Property (/PROP/TYPE11).
  4. The ICC flag defines the effect of strain rate on the maximum material stress σ max . Figure 1 shows the value of σ max for the corresponding ICC flag.


    σ = ( a + b ε p n ) ( 1 + c ln ( ε ˙ ε ˙ o ) ) σ = ( a + b ε p n ) ( 1 + c ln ( ε ˙ ε ˙ o ) )
    σ max = σ max 0 ( 1 + c ln ( ε ˙ ε ˙ o ) ) σ max = σ max 0
    Figure 1.
  5. Strain rate smoothing is a process used to filter out higher strain rate frequencies.
  6. When principal strain ε i becomes higher than ε t i , then damage between ε t i and ε f i is controlled by the damage factor d i , which is given by the following equation.

    d i = min ( ε i ε t i ε m i ε t i ,   d max i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaciyBaiaacMgacaGGUbWaaeWa aeaadaWcaaqaaiabew7aLnaaBaaaleaacaWGPbaabeaakiabgkHiTi abew7aLnaaBaaaleaacaWG0bGaamyAaaqabaaakeaacqaH1oqzdaWg aaWcbaGaamyBaiaadMgaaeqaaOGaeyOeI0IaeqyTdu2aaSbaaSqaai aadshacaWGPbaabeaaaaGccaGGSaGaaeiiaiaadsgadaWgaaWcbaGa ciyBaiaacggacaGG4baabeaakmaaBaaaleaacaWGPbaabeaaaOGaay jkaiaawMcaaaaa@5430@ in directions, i = 1, 2.

    Stress is reduced according to damage parameter σ i r e d u c e d = σ i ( 1 d i ) . Damage is reversible between ε t i and ε f i . When ε i > ε f i , damage is set to d max i and it is not updated further.

    mat_law27_tensile
    Figure 2.