/MAT/LAW27 (PLAS_BRIT)

Block Format Keyword This law combines an isotropic elasto-plastic Johnson-Cook material model with an orthotropic brittle failure model. Material damage is accounted for prior to failure. Failure and damage occur only in tension. This law is applicable only for shells.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW27/mat_ID/unit_ID or /MAT/PLAS_BRIT/mat_ID/unit_ID
mat_title
ρi                
E ν            
a b n   σmax0
c ε˙0 ICC Fsmooth Fcut    
εt1 εm1 dmax1 εf1    
εt2 εm2 dmax2 εf2    

Definitions

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρi Initial density.

(Real)

[kgm3]
E Young's modulus.

(Real)

[Pa]
ν Poisson's ratio.

(Real)

 
a Plasticity yield stress.

(Real)

[Pa]
b Plasticity hardening parameter.

(Real)

[Pa]
n Plasticity hardening exponent.

(Real)

 
σmax0 Plasticity maximum stress.

Default = 1030 (Real)

[Pa]
c Strain rate coefficient.
= 0
No strain rate effect.

Default = 0.00 (Real)

 
ε˙0 Reference strain rate.

If ε˙ε˙0 , no strain rate effect.

(Real)

[1s]
ICC Strain rate computation flag. 4
= 0 (Default)
Set to 1.
= 1
Strain rate effect on σmax .
= 2
No strain rate effect on σmax .

(Integer)

 
Fsmooth Strain rate smoothing flag.
=0 (Default)
Not active.
=1
Active.

(Integer)

 
Fcut Cutoff frequency for strain rate smoothing. 5

Default = 1030 (Real)

[Hz]
εt1 Tensile failure strain at which stress starts to reduce in the principal strain direction 1. 6

Default = 1.0 x 1030 (Real)

 
εm1 Maximum tensile failure strain in principal strain direction 1 at which the stress in the element is set to a value dependent on dmax1. 6

Default = 1.1 x 1030 (Real)

 
dmax1 Maximum damage factor in principal strain direction 1. 6

Default = 0.999 (Real)

 
εf1 Maximum tensile strain for element deletion in principal strain direction 1. 6

Default = 1.2 x 1030 (Real)

 
εt2 Tensile failure strain at which stress starts to reduce in the principal strain direction 2.

Default = 1.0 x 1030 (Real)

 
εm2 Maximum tensile strain in principal strain direction 2 at which the stress in the element is set to a value dependent on dmax2.

Default = 1.1 x 1030 (Real)

 
dmax2 Maximum damage factor in principal strain direction 2. 6

Default = 0.999 (Real)

 
εf2 Maximum tensile strain for element deletion in principal strain direction 2.

Default = 1.2 x 1030 (Real)

 

Example (Aluminum)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  Mg                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/PLAS_BRIT/1/1
Aluminum
#              RHO_I
               .0027                   
#                  E                  NU
               60400                 .33
#                  a                   b                   n                                SIG_max0
              90.266              223.14                .375                                     177
#                  c           EPS_DOT_0       ICC   Fsmooth               F_cut 
                   0                   0         0         0                   0
#             EPS_t1              EPS_m1              d_max1              EPS_f1
                 .16                 .72                .999                   1
#             EPS_t2              EPS_m2              d_max2              EPS_f2
                   0                   0                   0                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. In this model, the material behaves as a linear-elastic material when the equivalent stress is lower than the plastic yield stress. For higher stress values, the material behavior is plastic and the stress is calculated as.(1)
    σ=(a+bεpn)(1+clnε˙ε˙0)
    Where,
    εp
    Plastic strain
    ε˙
    Strain rate

    The plasticity hardening exponent, n must be less than 1.

  2. This law allows the modeling of material damage and brittle failure in two principal directions (1 and 2).
  3. This law is only applicable to shell elements. It is compatible with Shell Property (/PROP/TYPE1) and Sandwich Shell Property (/PROP/TYPE11).
  4. The ICC flag defines the effect of strain rate on the maximum material stress σmax . Figure 1 shows the value of σmax for the corresponding ICC flag.


    σ=(a+bεpn)(1+cln(ε˙ε˙o)) σ=(a+bεpn)(1+cln(ε˙ε˙o))
    σmax=σmax0(1+cln(ε˙ε˙o)) σmax=σmax0
    Figure 1.
  5. Strain rate smoothing is a process used to filter out higher strain rate frequencies.
  6. When principal strain εi becomes higher than εti , then damage between εti and εfi is controlled by the damage factor di , which is given by the following equation.

    di=min(εiεtiεmiεti, dmaxi) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaciyBaiaacMgacaGGUbWaaeWaaeaadaWcaaqaaiabew7aLnaaBaaaleaacaWGPbaabeaakiabgkHiTiabew7aLnaaBaaaleaacaWG0bGaamyAaaqabaaakeaacqaH1oqzdaWgaaWcbaGaamyBaiaadMgaaeqaaOGaeyOeI0IaeqyTdu2aaSbaaSqaaiaadshacaWGPbaabeaaaaGccaGGSaGaaeiiaiaadsgadaWgaaWcbaGaciyBaiaacggacaGG4baabeaakmaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaa@5430@ in directions, i = 1, 2.

    Stress is reduced according to damage parameter σireduced=σi(1di) . Damage is reversible between εti and εfi . When εi>εfi , damage is set to dmaxi and it is not updated further.

    mat_law27_tensile
    Figure 2.