/MAT/LAW3 (HYDPLA)

Block Format Keyword This law represents an isotropic elasto-plastic material using the Johnson-Cook material model.

This model expresses material stress as a function of strain and may account for the nonlinear dependence between pressure and volumetric strain when corresponding equation of state is specified. A built-in failure criterion based on the maximum plastic strain is available. This material law is compatible with solid elements only.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW3/mat_ID/unit_ID or /MAT/HYDPLA/mat_ID/unit_ID
mat_title
ρ i ρ 0            
E ν            
a b n ε p m a x σ max
Pmin              

Definitions

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
mat_title Material title

(Character, maximum 100 characters)

 
ρ i Initial density

(Real)

[ kg m 3 ]
ρ 0 Reference density used in E.O.S (equation of state)

Default = ρ 0 = ρ i (Real)

[ kg m 3 ]
E Young's modulus

(Real)

[ Pa ]
ν Poisson's ratio

(Real)

 
a Plastic yield stress

(Real)

[ Pa ]
b Plastic hardening parameter

(Real)

[ Pa ]
n Plastic hardening exponent

(Real)

 
ε p m a x Failure plastic strain

Default = 1030 (Real)

 
σ max Maximum stress

Default = 1030 (Real)

[ Pa ]
Pmin Cutoff minimum pressure ( < 0 )

Default = -1030 (Real)

[ Pa ]

Example (Aluminum)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  g                  cm                 mus
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/HYDPLA/1/1
Aluminum
#              RHO_I               RHO_0
                 2.8                   0
#                  E                  nu
              .72352                 .33
#                  a                   b                   n             eps_max           sigma_max
               .0024               .0042                  .8                   9               .0068
#               Pmin                 Psh
               -.005
/EOS/TILLOTSON/1/1
Aluminum
#                 C1                  C2                   A                   B
                .752                 .65                  .5                1.63
#                 ER                  ES                  VS                  E0               RHO_0
                .135                .081                 1.1                   0                   0
#              ALPHA                BETA
                   5                   5
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. In this model, the material behaves as a linear-elastic material when the equivalent stress is lower than the plastic yield stress. For higher stress values, the material behavior is plastic and the stress is calculated as: (1)
    σ = ( a + b ε p n )

    Where, ε ¯ p is the plastic strain.

  2. The plastic yield stress should always be greater than zero. To model pure elastic behavior, the plastic yield stress will be set to 1030.
  3. By default, the hydrostatic pressure is linearly proportional to volumetric strain:(2)
    P = K μ

    Where, K = E 3 ( 1 2 ν ) is the bulk modulus and μ = ρ ρ 0 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcq GH9aqpdaWcaaqaaiabeg8aYbqaaiabeg8aYnaaBaaaleaacaaIWaaa beaaaaGccqGHsislcaaIXaaaaa@3F42@ is the volumetic strain.

    An additional Equation of State (Equation of State) card can refer to this material in order to incorporate a nonlinear dependency between hydrostatic pressure and volumetric strain. The yield stress should be strictly positive.

  4. When ε ¯ p attains (or exceeds) the value of ε p m a x (for tension, compression or shear), in one integration point, the solid element are deleted.