/MAT/LAW93 (ORTH_HILL) or (CONVERSE)

Block Format Keyword This law describes the orthotropic elastic behavior material with Hill plasticity and is applicable to shell and solid elements (/BRICK, /TETRA4 and /TETRA10).

It could be used with property set /PROP/TYPE11, /PROP/TYPE17, /PROP/TYPE51, /PROP/PCOMPP for shell and /PROP/TYPE6 for solid.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW93/mat_ID/unit_ID or /MAT/ORTH_HILL/mat_ID/unit_ID or /MAT/CONVERSE/mat_ID/unit_ID/
mat_title
ρ i                
E11 E22 E33 G12 ν 12
G13 G23 ν 13 ν 23  
Nrate VP Fcut            
Curve input for yield if N rate >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobWaaS baaSqaaiaadkhacaWGHbGaamiDaiaadwgaaeqaaOGaeyOpa4JaaGim aaaa@3CEA@ , define Nrate plasticity function per line:
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
fct_IDi   Fscalei ε ˙ i        
Parameter input for yield:
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
σ y QR1 CR1 QR2 CR2
Yield stress ratio for HILL critieria:
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
R11 R22 R12    
R33 R13 R23    

Definitions

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρ i Initial density.

(Real)

[ kg m 3 ]
E11 Young’s modulus in direction 11.

(Real)

[ Pa ]
E22 Young’s modulus in direction 22.

(Real)

[ Pa ]
E33 Young’s modulus in direction 33.

(Real)

[ Pa ]
G12 Shear modulus in direction 12.

(Real)

[ Pa ]
G13 Shear modulus in direction 13.

(Real)

[ Pa ]
G23 Shear modulus in direction 23.

(Real)

[ Pa ]
ν 12 Poisson's ratio 12.

(Real)

 
ν 13 Poisson's ratio 13.

(Real)

 
ν 23 Poisson's ratio 23

(Real)

 
Nrate Number of yield function.  
VP Strain rate choice flag.
= 1
Strain rate effect on yield stress depends on the plastic strain rate.
= 2 (Default)
Strain rate effect on yield depends on the total strain rate.
= 3
Strain rate effect on yield depends on the deviatoric strain rate.

(Integer)

 
Fcut Cutoff frequency for strain rate filtering.

Default = 1.0 x 104 (Real)

[Hz]
fct_IDi Plasticity curves ith function identifier (i=1, Nrate).

(Integer)

 
Fscalei Scale factor for ith function (i=1, Nrate).

Default = 1.0 (Real)

[ Pa ]
ε ˙ i Strain rate for ith function (i=1, Nrate).

(Real)

[ 1 s ]
σ y Initial yield stress.

Default = 1E30 (Real)

[ Pa ]
QR1 Parameter of hardening.

Default = 0.0 (Real)

[ Pa ]
CR1 Parameter of hardening.

Default = 0.0 (Real)

 
QR2 Parameter of hardening.

Default = 0.0 (Real)

[ Pa ]
CR2 Parameter of hardening.

Default = 0.0 (Real)

 
R11 Yield stress ratio in direction 11.

Default = 1.0 (Real)

 
R22 Yield stress ratio in direction 22.

Default = 1.0 (Real)

 
R33 Yield stress ratio in direction 33.

Default = 1.0 (Real)

 
R12 Yield stress ratio in direction 12.

Default = 1.0 (Real)

 
R13 Yield stress ratio in direction 13.

Default = 1.0 (Real)

 
R23 Yield stress ratio in direction 23.

Default = 1.0 (Real)

 

Example (Curve Input)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW93/1/1
plastic
#              RHO_I
           2.730E-09
#                E11                 E22                 E33                 G12                Nu12
              225654              195400              178526            75187.97                0.30
#                G13                 G23                Nu13                Nu23
            75187.97            75187.97                0.28                0.32
#     Nrate       VP                Fcut
         2         1                 0.0
#   Ifunct                        Yscale              Epsdot
         5                           1.0                0.01	     
         5                           1.5               100.0	       
#               SigY                 QR1                 CR1                 QR2                 CR2
                   0                   0                   0                 0.0                 0.0
#                R11                 R22                 R12
                 1.0             1.05626             0.96425
#                R33                 R13                 R23
              0.9337                 1.0                 1.0
/FUNCT/5
plastic
#                  X                   Y           
                   0         165.6362749
               0.002         173.8123558
               0.005         180.2967164
                0.01         186.5926709
                0.02         193.8182168
                0.05         204.4407991
                0.07         208.5903797
                 0.1         213.1182051
                0.12         215.4817557
                0.15         218.4183864
                0.17         220.0863912
                 0.2         222.2743041
                0.22         223.5689486
                0.25         225.3186882
                0.27         226.3794409
                 0.3         227.840544
                0.32         228.7406278
                0.35         229.996802
                0.37         230.7795124
                 0.4         231.8824363
                 0.5         235.0704031
                 0.6         237.7095003
                 0.7         239.9650034
                 0.8         241.9367878
                 0.9         243.689935
                   1         245.2692715
                 1.5         251.4456403
                   2         255.9237789
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. The yield stress is compared to an equivalent stress in the orthotropic frame. For solid elements, this equivalent stress is defined as:(1)
    σ e q = F ( σ 22 2 σ 33 2 ) + G ( σ 33 2 σ 11 2 ) + H ( σ 11 2 σ 22 2 ) + 2 L σ 23 2 + 2 M σ 31 2 + 2 N σ 12 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadwgacaWGXbaabeaakiabg2da9maakaaabaGaamOramaa bmaabaGaeq4Wdm3aa0baaSqaaiaaikdacaaIYaaabaGaaGOmaaaaki abgkHiTiabeo8aZnaaDaaaleaacaaIZaGaaG4maaqaaiaaikdaaaaa kiaawIcacaGLPaaacqGHRaWkcaWGhbWaaeWaaeaacqaHdpWCdaqhaa WcbaGaaG4maiaaiodaaeaacaaIYaaaaOGaeyOeI0Iaeq4Wdm3aa0ba aSqaaiaaigdacaaIXaaabaGaaGOmaaaaaOGaayjkaiaawMcaaiabgU caRiaadIeadaqadaqaaiabeo8aZnaaDaaaleaacaaIXaGaaGymaaqa aiaaikdaaaGccqGHsislcqaHdpWCdaqhaaWcbaGaaGOmaiaaikdaae aacaaIYaaaaaGccaGLOaGaayzkaaGaey4kaSIaaGOmaiaadYeacqaH dpWCdaqhaaWcbaGaaGOmaiaaiodaaeaacaaIYaaaaOGaey4kaSIaaG Omaiaad2eacqaHdpWCdaqhaaWcbaGaaG4maiaaigdaaeaacaaIYaaa aOGaey4kaSIaaGOmaiaad6eacqaHdpWCdaqhaaWcbaGaaGymaiaaik daaeaacaaIYaaaaaqabaaaaa@7353@
    Where,
    F = 1 2 ( 1 R 22 2 + 1 R 33 2 1 R 11 2 )
    G = 1 2 ( 1 R 33 2 + 1 R 11 2 1 R 22 2 )
    H = 1 2 ( 1 R 22 2 + 1 R 11 2 1 R 33 2 )
    L = 3 2 R 23 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiabg2 da9maalaaabaGaaG4maaqaaiaaikdacaWGsbWaa0baaSqaaiaaikda caaIZaaabaGaaGOmaaaaaaaaaa@3C90@
    M = 3 2 R 31 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2 da9maalaaabaGaaG4maaqaaiaaikdacaWGsbWaa0baaSqaaiaaioda caaIXaaabaGaaGOmaaaaaaaaaa@3C90@
    N = 3 2 R 12 2
    R i i = σ F i i σ F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaWGPbGaamyAaaqaaaaakiabg2da9maalaaabaGaeq4Wdm3a a0baaSqaaiaadAeaaeaacaWGPbGaamyAaaaaaOqaaiabeo8aZnaaBa aaleaacaWGgbaabeaaaaaaaa@4151@
    Normal directions
    R i j = 3 σ F i j σ F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaWGPbGaamOAaaqaaaaakiabg2da9maalaaabaWaaOaaaeaa caaIZaaaleqaaOGaeq4Wdm3aa0baaSqaaiaadAeaaeaacaWGPbGaam OAaaaaaOqaaiabeo8aZnaaBaaaleaacaWGgbaabeaaaaaaaa@4235@
    Shear directions
    σ F i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAeaaeaacaWGPbGaamOAaaaaaaa@3A8E@
    Yield stress in direction i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGPbGaamOAaaaa@3A94@
    σ F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAeaaeaaaaaaaa@38B1@
    Global flow stress that can either be defined with a sum of Voce hardening, or can be tabulated (see below).
    Under plane-stress conditions, for shell elements, the equivalent yield stress becomes:(2)
    σ e q = ( G + H ) σ 11 2 + ( F + H ) σ 22 2 2 H σ 11 σ 22 + 2 N σ 12 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadwgacaWGXbaabeaakiabg2da9maakaaabaWaaeWaaeaa caWGhbGaey4kaSIaamisaaGaayjkaiaawMcaaiabeo8aZnaaDaaale aacaaIXaGaaGymaaqaaiaaikdaaaGccqGHRaWkdaqadaqaaiaadAea cqGHRaWkcaWGibaacaGLOaGaayzkaaGaeq4Wdm3aa0baaSqaaiaaik dacaaIYaaabaGaaGOmaaaakiabgkHiTiaaikdacaWGibGaeq4Wdm3a aSbaaSqaaiaaigdacaaIXaaabeaakiabeo8aZnaaBaaaleaacaaIYa GaaGOmaaqabaGccqGHRaWkcaaIYaGaamOtaiabeo8aZnaaDaaaleaa caaIXaGaaGOmaaqaaiaaikdaaaaabeaaaaa@5C13@
  2. The yield function Φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyeaaa@3770@ will compare the Hill’s equivalent stress σ e q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadwgacaWGXbaabeaaaaa@39C6@ to the flow stress σ F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAeaaeaaaaaaaa@38B1@ as:(3)
    Φ = σ e q σ F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaey ypa0Jaeq4Wdm3aaSbaaSqaaiaadwgacaWGXbaabeaakiabgkHiTiab eo8aZnaaBaaaleaacaWGgbaabeaaaaa@3FF6@
    The two different ways to define the flow stress σ F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAeaaeaaaaaaaa@38B1@ are: parameter input or curve input
    • For parameter input, the flow stress is defined with an initial yield stress and a double Voce hardening as:(4)
      σ F = σ Y 0 + R ( ε p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadAeaaeqaaOGaeyypa0Jaeq4Wdm3aa0baaSqaaiaadMfa aeaacaaIWaaaaOGaey4kaSIaamOuaiaacIcacqaH1oqzdaWgaaWcba GaamiCaaqabaGccaGGPaaaaa@4336@

      With R ( ε p ) = i 2 Q R i ( 1 e C R i ε p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaacI cacqaH1oqzdaWgaaWcbaGaamiCaaqabaGccaGGPaGaeyypa0ZaaabC aeaacaWGrbGaamOuamaaBaaaleaacaWGPbaabeaakiabgwSixpaabm aabaGaaGymaiabgkHiTiaadwgadaahaaWcbeqaaiabgkHiTiaadoea caWGsbWaaSbaaWqaaiaadMgaaeqaaSGaeyyXICTaeqyTdu2aaSbaaW qaaiaadchaaeqaaaaaaOGaayjkaiaawMcaaaWcbaGaamyAaaqaaiaa ikdaa0GaeyyeIuoaaaa@521D@ .

    • For curve input, the parameters input values will be ignored.
      The yield can be defined with using stress versus plastic strain curve taking in account the strain rate effect. When the stress versus strain curves are defined, this is the default method for defining the hardening.
      1. If ε ˙ ε ˙ n , the yield is interpolated between f n and f n 1 .
      2. If ε ˙ ε ˙ 1 function, f 1 is used.
      3. Above ε ˙ max , yield is extrapolated.


        Figure 1.
  3. For tabulated flow stress, the strain rate ε ˙ computation depends on the value of the flag VP.
    • If VP= 1, the plastic strain rate is used
    • If VP= 2, the total strain rate is used
    • If VP= 3, the total strain rate is used

    In all cases the strain-rate computation includes a filtering. The cutoff frequency is automatically set for VP = 1. However, for VP = 1 or 3, you can input a cutoff frequency Fcut; otherwise, a default value will be set.