Lse
Model ElementLse is an abstract modeling element that defines a linear dynamic system.
Class Name
Lse
Description
Attribute Summary
Name | Property | Modifiable by command? | Designable? |
---|---|---|---|
id | Int () | No | |
label | Str () | Yes | |
x | Reference ("Array") | Yes | |
y | Reference ("Array") | Yes | |
u | Reference ("Array") | Yes | |
ic | Reference ("Array") | Yes | |
a | Reference ("Matrix") | Yes | |
b | Reference ("Matrix") | Yes | |
c | Reference ("Matrix") | Yes | |
d | Reference ("Matrix") | Yes | |
static_hold | Bool () | Yes | |
active | Bool () | Yes |
Usage
# Defined in a compiled user-written subroutine
Lse (x=objArray, A=objMatrix, optional_attributes)
Attributes
- x
- Reference to an existing Array object of type "X"
- a
- Reference to an existing Matrix object
- id
- Integer
- label
- String
- u
- Reference to an Array object of type U
- Y
- Reference to an Array object of type Y
- lc
- Specifies the Array used to store the initial values of the states, x of this LSE.
- static_hold
- Boolean
- b
- Reference to an existing Matrix object
- c
- Reference to an existing Matrix object
- d
- Reference to an existing Matrix object
- active
- Boolean
Examples
# Define the Arrays first
x = Array (type="X") # State Array
y = Array (type="Y") # Output Array
var8 = Variable(function="10*sin(2*pi*time)") # Forcing function
u = Array (type="U", variables=[var8]) # Input Array
# Define the matrices now
aValues = [ 0, 1, 0,
-20, 0, 10,
10, 0, -10]
a = Matrix (label="A-Matrix", rows=3, columns=3, full="RORDER", values=aValues)
bValues = [ 0, 1, 0]
b = Matrix (label="B-Matrix", rows=3, columns=1, full="RORDER", values=bValues)
cValues = [ 0, 0, 1,
1, 0, 0]
c = Matrix (label="C-Matrix", rows=3, columns=2, full="RORDER", values=cValues)
# Finally, define the linear system
lse = Lse (label="mass-spring-damper", x=x, y=y, u=u, a=a, b=b, c=c)
- The input is Fa(t)
- The two outputs are the coordinates x, y
- The three states are: x, vx and y
Comments
- See Properties for an explanation about what properties are, why they are used, and how you can extend these.
- For a more detailed explanation about Lse, see Control: State Equation.