View new features for HyperWorks 2022.
Learn the basics and discover the workspace.
Discover HyperWorks functionality with interactive tutorials.
Start HyperWorks and configure the applications.
Create, open, import, and save models.
Set up sessions and create report templates.
Solver interfaces supported in HyperWorks.
A solver interface is made up of a template and a FE-input reader.
Create and edit 2D parametric sketch geometry.
Create, edit, and cleanup geometry.
FE geometry is topology on top of mesh, meaning CAD and mesh exist as a single entity. The purpose of FE geometry is to add vertices, edges, surfaces, and solids on FE models which have no CAD geometry.
Different types of mesh you can create in HyperWorks.
Create and edit 0D, 1D, 2D, and 3D elements.
Create, organize and manage parts and subsystems.
HyperMesh composites modeling.
Create connections between parts of your model.
Rapidly change the shape of the FE mesh without severely sacrificing the mesh quality.
Create a reduced ordered model to facilitate optimization at the concept phase.
Workflow to support topology optimization model build and setup.
Multi-disciplinary design exploration and optimization tools.
Validate the model built before running solver analysis.
Tools used for crash and safety analysis.
Airbag solutions offer airbag folder utilities and exports a resulting airbag in a Radioss deck.
Essential utility tools developed using HyperWorks-Tcl.
Import an aeroelastic finite element model with Nastran Bulk Data format.
Framework to plug certification methods to assess margin of safety from the model and result information.
Streamline the creation of properties and 1D stiffener mesh using the info read from Marine CAD tools.
Create evaluation lines, evaluate them, and optimize the interfaces to eliminate squeak and rattle issues.
Explore the GeoD user interface.
Panels contains pre-processing and post-processing tools.
Results data can be post-processed using both HyperMesh and HyperView.
HyperGraph is a data analysis and plotting tool with interfaces to many file formats.
MotionView is a general pre-processor for Multibody Dynamics.
MotionView is a general pre-processor for Multi-body Dynamics.
The Model Browser allows you to view the MotionView model structure while providing display and editing control of entities.
The MotionView ribbons allows you to quickly access tools and standard functions, and is located along the top of MotionView.
Create and edit systems, assemblies, and analyses, use wizards to build models quickly, create and edit belt/pullies, NLFE stabars, and NLFE springs, access the EDEM and Track Builder tools.
Create and edit points, bodies, lines (curve graphics), solids (graphics), markers and vectors, edit grounded/ungrounded bodies, create and edit rigid body groups, configure gravity, and select material properties.
Use the Points tool to create and edit individual points, points on a vector, points along a curve, points at the center of a circle, and parametric points.
Use the Bodies tool to create and edit rigid, point mass, and deformable/flexible bodies.
The total mass, center of gravity, and inertia of the models or bodies within a model can be quickly obtained through the CG/Inertia Summary utility.
Use the tool to create curve graphics from a set of selected points or nodes. The generated curve graphics can be used to setup 2D rigid to rigid contact or advanced joints, such as point to curve or curve to curve joints. Based on the selected set of points or nodes belonging to a file graphic or CAD graphic, this tool creates a 3D cartesian curve and a curve graphic.
Use the Graphics tool to create and edit visualizations for entities during pre-processing and post-processing.
There are three ways in which a box graphic (or cuboid) can be defined based on the location of the graphic reference frame about which the graphic is being created. The dimensions for the graphic are also specified using this reference frame.
A curve graphic is created by positioning a 3D curve entity (Cartesian or parametric curve) in a reference frame (marker). The reference frame can be an explicit marker or can be implicitly defined using a body-point-orientation method.
The file graphic type is used when realistic shapes of the bodies of the mechanism are to be included in the model.
A graphic system entity acts similar to that of a general system entity - it is intended to be used as a container for graphic entities, and it can be used repetitively. Like general systems, graphic systems can use attachments that refer to entities that are external to the system - this allows you to use them repetitively by parameterizing the body, point, etc. that are typically needed to define the graphics within the graphic system.
From the Graphics panel’s Visualization tab, you can modify the visual attributes of the graphic types.
Use the Markers tool to create coordinate systems and reference frames.
Use the Vectors tool to create and edit vectors.
Use the Ground tool to change a rigid body or a rigid group to a grounded state.
Use the Rigid Groups tool to group bodies into a rigid group.
Use the tool to view, add, and edit the material properties that are used for NLFE bodies.
Create and edit various model entities.
Create and edit outputs, create and edit templates, run the solver, view reports, access the Load Export utility, use the Optimization Wizard, open HyperStudy, utilize many pre-processing and post-processing capabilities with regards to flexible bodies (or flexbodies), run MS/EDEM cosimulation in batch mode, and generate H3D from EDEM.
MotionView supports the importing of several types of CAD and FE formats.
MotionView has many pre-processing and post-processing capabilities with regards to flexible bodies, or flexbodies, for multi-body dynamics models.
From the Preferences dialog, you can access various MotionView options for your model.
Explore the various vehicle modeling tools.
Reference material for the HyperWorks Desktop scripting interface which is a set of Tcl/Tk commands.
Reference materials for the MotionView MDL Language, Tire Modeling, and the MDL Library.
Reference material detailing command statements, model statements, functions and the Subroutine Interface available in MotionSolve.
Reference material for Templex (a general purpose text and numeric processor) and additional mathematical functions and operators.
Reference materials for the MotionView Python Language.
MediaView plays video files, displays static images, tracks objects, and measures distances.
TableView creates an Excel-like spreadsheet in HyperWorks.
TextView math scripts reference vector data from HyperGraph windows to automate data processing and data summary.
Create, define, and export reports.
MotionView is a general pre-processor for Multibody Dynamics.
The MotionView ribbons allows you to quickly access tools and standard functions, and is located along the top of MotionView.
Create and edit points, bodies, lines (curve graphics), solids (graphics), markers and vectors, edit grounded/ungrounded bodies, create and edit rigid body groups, configure gravity, and select material properties.
Use the Graphics tool to create and edit visualizations for entities during pre-processing and post-processing.
© 2022 Altair Engineering, Inc. All Rights Reserved.