タンクテスト

タンクテスト出力からのデータを使用することにより、Radiossへの入力として使用できる、供給されるガスの温度とマスフローを得ることができます。

タンクテストで、インジェクションの点とタンク中央の点で圧力の計測が可能で、それらが等しければ、圧力変化を得ることができます。また、供給されるガスの量と、テストでのガスの特性も得られます。

温度については、温度計の精度が十分でないことが多いため、正確なテストデータを取得することがより困難です。そのため、タンクテストの温度が間違っている可能性があります。


図 1. 未知の質量流量

以下は、注入温度とタンク内の温度が既知の場合と未知の場合があることを考慮に入れたケースになります。

インジェクターとタンクの温度が未知のケースでは:
  • 初期と注入ガス組成
    それぞれの要素のモル質量( M W i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaam 4vamaaBaaaleaacaWGPbaabeaaaaa@3927@ ) とモル分率 ( X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGybWaaS baaSqaaiaadMgaaeqaaaaa@3856@ )が既知であればガスのモル質量( M W MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaam 4vaaaa@380D@ )を定義することが可能です:(1)
    MW= X i M W i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaam 4vaiabg2da9maaqaeabaGaamiwamaaBaaaleaacaWGPbaabeaakiab gwSixlaad2eacaWGxbWaaSbaaSqaaiaadMgaaeqaaaqabeqaniabgg HiLdaaaa@422F@
    ガスの混合体の単位体積当たりの平均熱容量はAmagat-Leduc方程式で与えられます:(2)
    C p ( T )= m i C pa m i + m i C pb m i T+ m i C pc m i T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaS baaSqaaiaadchaaeqaaOWaaeWaaeaacaWGubaacaGLOaGaayzkaaGa eyypa0ZaaSaaaeaadaaeabqaaiaad2gadaWgaaWcbaGaamyAaaqaba GccqGHflY1caWGdbWaaSbaaSqaaiaadchacaWGHbaabeaaaeqabeqd cqGHris5aaGcbaWaaabqaeaacaWGTbWaaSbaaSqaaiaadMgaaeqaaa qabeqaniabggHiLdaaaOGaey4kaSYaaSaaaeaadaaeabqaaiaad2ga daWgaaWcbaGaamyAaaqabaGccqGHflY1caWGdbWaaSbaaSqaaiaadc hacaWGIbaabeaaaeqabeqdcqGHris5aaGcbaWaaabqaeaacaWGTbWa aSbaaSqaaiaadMgaaeqaaaqabeqaniabggHiLdaaaOGaamivaiabgU caRmaalaaabaWaaabqaeaacaWGTbWaaSbaaSqaaiaadMgaaeqaaOGa eyyXICTaam4qamaaBaaaleaacaWGWbGaam4yaaqabaaabeqab0Gaey yeIuoaaOqaamaaqaeabaGaamyBamaaBaaaleaacaWGPbaabeaaaeqa beqdcqGHris5aaaakiaadsfadaahaaWcbeqaaiaaikdaaaaaaa@686E@

前の式を用いて、初期状態と注入された混合体の熱容量係数( C p ( T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGWbaabeaakiaacIcacaWGubGaaiykaaaa@3A1B@ )の定義が可能な場合があります。

注入されたガスの特性が既知であれば、初期のガスと混合体のマスフローとインジェクターの温度を見つける事が可能です。以下の基礎方程式が解析の実行に用いられます。
  • 理想気体の状態方程式は:(3)
    P V = n R T , n = m M W
    ここで、 R = 8.314 J m o l e K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbGaey ypa0JaaGioaiaac6cacaaIZaGaaGymaiaaisdadaWcaaqaaiaacQea aeaacaGGTbGaai4BaiaacYgacaGGLbGaeyyXICTaai4saaaaaaa@4399@
  • 断熱の方程式は:(4)
    H = c o n s t . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibGaey ypa0Jaam4yaiaad+gacaWGUbGaam4CaiaadshacaGGUaaaaa@3DA3@
    ここで、 H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibaaaa@372B@ は系の全エンタルピー(インフレーター+タンク)です。
エネルギー保存から、タンクテストの基礎のエネルギー方程式は次のように書くことができます:(5)
d E airbag =PdV+d H in d H out MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaam yramaaBaaaleaacaWGHbGaamyAaiaadkhacaWGIbGaamyyaiaadEga aeqaaOGaeyypa0JaeyOeI0IaamiuaiaadsgacaWGwbGaey4kaSIaam izaiaadIeadaWgaaWcbaGaamyAaiaad6gaaeqaaOGaeyOeI0Iaamiz aiaadIeadaWgaaWcbaGaam4BaiaadwhacaWG0baabeaaaaa@4CBC@

ここで、タンクテストは断熱的であるため、 d H o u t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaam isamaaBaaaleaacaWGVbGaamyDaiaadshaaeqaaaaa@3B27@ =0となります。タンクテストの一定体積は、 d V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaam Ovaaaa@3822@ =0を意味します。

したがって、式 5は下記のように要約することができます:(6)
U f U 0 = d H i n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaS baaSqaaiaadAgaaeqaaOGaeyOeI0IaamyvamaaBaaaleaacaaIWaaa beaakiabg2da9iaadsgacaWGibWaaSbaaSqaaiaadMgacaWGUbaabe aaaaa@3FD9@

0 T mix m ( in+air ) C V( in+air ) dT 0 T air m ( air ) C V( air ) dT= 0 T in m ( in ) C P( in ) dT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHuhY2da WdXbqaaiaad2gadaWgaaWcbaWaaeWaaeaacaWGPbGaamOBaiabgUca RiaadggacaWGPbGaamOCaaGaayjkaiaawMcaaaqabaaabaGaaGimaa qaaiaadsfadaWgaaadbaGaamyBaiaadMgacaWG4baabeaaa0Gaey4k IipakiabgwSixlaadoeadaWgaaWcbaGaamOvamaabmaabaGaamyAai aad6gacqGHRaWkcaWGHbGaamyAaiaadkhaaiaawIcacaGLPaaaaeqa aOGaamizaiaadsfacqGHsisldaWdXbqaaiaad2gadaWgaaWcbaWaae WaaeaacaWGHbGaamyAaiaadkhaaiaawIcacaGLPaaaaeqaaaqaaiaa icdaaeaacaWGubWaaSbaaWqaaiaadggacaWGPbGaamOCaaqabaaani abgUIiYdGccqGHflY1caWGdbWaaSbaaSqaaiaadAfadaqadaqaaiaa dggacaWGPbGaamOCaaGaayjkaiaawMcaaaqabaGccaWGKbGaamivai abg2da9maapehabaGaamyBamaaBaaaleaadaqadaqaaiaadMgacaWG UbaacaGLOaGaayzkaaaabeaaaeaacaaIWaaabaGaamivamaaBaaame aacaWGPbGaamOBaaqabaaaniabgUIiYdGccqGHflY1caWGdbWaaSba aSqaaiaadcfadaqadaqaaiaadMgacaWGUbaacaGLOaGaayzkaaaabe aakiaadsgacaWGubaaaa@815B@

m ( mix ) T mix ( C pa( mix ) + C pb( mix ) T mix 2 + C pc( mix ) T mix 2 3 R M W mix ) m ( air ) T 0 ( C pa( air ) + C pb( air ) T 0 2 + C pc( air ) T 0 2 3 R M W air )= m ( in ) T in ( C pa( in ) + C pb( in ) T in 2 + C pc( in ) T in 2 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabgs DiBlaad2gadaWgaaWcbaWaaeWaaeaacaWGTbGaamyAaiaadIhaaiaa wIcacaGLPaaaaeqaaOGaamivamaaBaaaleaacaWGTbGaamyAaiaadI haaeqaaOWaaeWaaeaacaWGdbWaaSbaaSqaaiaadchacaWGHbWaaeWa aeaacaWGTbGaamyAaiaadIhaaiaawIcacaGLPaaaaeqaaOGaey4kaS Iaam4qamaaBaaaleaacaWGWbGaamOyamaabmaabaGaamyBaiaadMga caWG4baacaGLOaGaayzkaaaabeaakmaalaaabaGaamivamaaBaaale aacaWGTbGaamyAaiaadIhaaeqaaaGcbaGaaGOmaaaacqGHRaWkcaWG dbWaaSbaaSqaaiaadchacaWGJbWaaeWaaeaacaWGTbGaamyAaiaadI haaiaawIcacaGLPaaaaeqaaOWaaSaaaeaacaWGubWaaSbaaSqaaiaa d2gacaWGPbGaamiEaaqabaGcdaahaaWcbeqaaiaaikdaaaaakeaaca aIZaaaaiabgkHiTmaalaaabaGaamOuaaqaaiaad2eacaWGxbWaaSba aSqaaiaad2gacaWGPbGaamiEaaqabaaaaaGccaGLOaGaayzkaaGaey OeI0IaamyBamaaBaaaleaadaqadaqaaiaadggacaWGPbGaamOCaaGa ayjkaiaawMcaaaqabaGccaWGubWaaSbaaSqaaiaaicdaaeqaaaGcba WaaeWaaeaacaWGdbWaaSbaaSqaaiaadchacaWGHbWaaeWaaeaacaWG HbGaamyAaiaadkhaaiaawIcacaGLPaaaaeqaaOGaey4kaSIaam4qam aaBaaaleaacaWGWbGaamOyamaabmaabaGaamyyaiaadMgacaWGYbaa caGLOaGaayzkaaaabeaakmaalaaabaGaamivamaaBaaaleaacaaIWa aabeaaaOqaaiaaikdaaaGaey4kaSIaam4qamaaBaaaleaacaWGWbGa am4yamaabmaabaGaamyyaiaadMgacaWGYbaacaGLOaGaayzkaaaabe aakmaalaaabaGaamivamaaBaaaleaacaaIWaaabeaakmaaCaaaleqa baGaaGOmaaaaaOqaaiaaiodaaaGaeyOeI0YaaSaaaeaacaWGsbaaba GaamytaiaadEfadaWgaaWcbaGaamyyaiaadMgacaWGYbaabeaaaaaa kiaawIcacaGLPaaacqGH9aqpcaWGTbWaaSbaaSqaamaabmaabaGaam yAaiaad6gaaiaawIcacaGLPaaaaeqaaOGaamivamaaBaaaleaacaWG PbGaamOBaaqabaGcdaqadaqaaiaadoeadaWgaaWcbaGaamiCaiaadg gadaqadaqaaiaadMgacaWGUbaacaGLOaGaayzkaaaabeaakiabgUca RiaadoeadaWgaaWcbaGaamiCaiaadkgadaqadaqaaiaadMgacaWGUb aacaGLOaGaayzkaaaabeaakmaalaaabaGaamivamaaBaaaleaacaWG PbGaamOBaaqabaaakeaacaaIYaaaaiabgUcaRiaadoeadaWgaaWcba GaamiCaiaadogadaqadaqaaiaadMgacaWGUbaacaGLOaGaayzkaaaa beaakmaalaaabaGaamivamaaBaaaleaacaWGPbGaamOBaaqabaGcda ahaaWcbeqaaiaaikdaaaaakeaacaaIZaaaaaGaayjkaiaawMcaaaaa aa@C0F8@

インフレーター温度

式 6で、未知の変数は T i n i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGPbGaamOBaiaadMgaaeqaaaaa@39CA@ のみです。

他の変数は既知であるか、または式 2式 3を用いて決めることができます:
  • m ( i n ) m ( a i r ) = M W a i r P 0 V R T 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaamaabmaabaGaamyAaiaad6gaaiaawIcacaGLPaaaaeqaaOGa amyBamaaBaaaleaadaqadaqaaiaadggacaWGPbGaamOCaaGaayjkai aawMcaaaqabaGccqGH9aqpcaWGnbGaam4vamaaBaaaleaacaWGHbGa amyAaiaadkhaaeqaaOWaaSaaaeaacaWGqbWaaSbaaSqaaiaaicdaae qaaOGaamOvaaqaaiaadkfacaWGubWaaSbaaSqaaiaaicdaaeqaaaaa aaa@4B67@ および n ( m i x ) = m ( i n ) M W i n + m ( a i r ) M W a i r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaS baaSqaamaabmaabaGaamyBaiaadMgacaWG4baacaGLOaGaayzkaaaa beaakiabg2da9maalaaabaGaamyBamaaBaaaleaadaqadaqaaiaadM gacaWGUbaacaGLOaGaayzkaaaabeaaaOqaaiaad2eacaWGxbWaaSba aSqaaiaadMgacaWGUbaabeaaaaGccqGHRaWkdaWcaaqaaiaad2gada WgaaWcbaWaaeWaaeaacaWGHbGaamyAaiaadkhaaiaawIcacaGLPaaa aeqaaaGcbaGaamytaiaadEfadaWgaaWcbaGaamyyaiaadMgacaWGYb aabeaaaaaaaa@506D@
  • i = acの場合: C p i ( i n ) , C p i ( a i r ) , C p i ( m i x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaS baaSqaaiaadchacaWGPbaabeaakmaaBaaaleaadaqadaqaaiaadMga caWGUbaacaGLOaGaayzkaaaabeaakiaacYcacaWGdbWaaSbaaSqaai aadchacaWGPbaabeaakmaaBaaaleaadaqadaqaaiaadggacaWGPbGa amOCaaGaayjkaiaawMcaaaqabaGccaGGSaGaam4qamaaBaaaleaaca WGWbGaamyAaaqabaGcdaWgaaWcbaWaaeWaaeaacaWGTbGaamyAaiaa dIhaaiaawIcacaGLPaaaaeqaaaaa@4D1D@ は、式 2を使用して計算されます。および
  • T m i x = P t a n k V t a n k n ( m i x ) R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGubWaaS baaSqaaiaad2gacaWGPbGaamiEaaqabaGccqGH9aqpdaWcaaqaaiaa dcfadaWgaaWcbaGaamiDaiaadggacaWGUbGaam4AaaqabaGccaWGwb WaaSbaaSqaaiaadshacaWGHbGaamOBaiaadUgaaeqaaaGcbaGaamOB amaaBaaaleaacaGGOaGaamyBaiaadMgacaWG4bGaaiykaaqabaGcca WGsbaaaaaa@4B36@

したがって、式 6で、注入されるガスのインジェクタ T i n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGPbGaamOBaiaadMgaaeqaaaaa@39CA@ における温度は、 T i n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGPbGaamOBaiaadMgaaeqaaaaa@39CA@ の反復で見つけることができます。最初に温度を推定し、収束解を得るのに6回の反復もあれば十分です。

マスフロー

タンクテストの上部での圧力の時間変化が既知であれば、マスフロー比率は次の式で決める事ができます:(7)
m ˙ = m P P t ΔM ΔP P t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGTbGbai aacqGH9aqpdaWcaaqaaiabgkGi2kaad2gaaeaacqGHciITcaWGqbaa amaalaaabaGaeyOaIyRaamiuaaqaaiabgkGi2kaadshaaaGaeyyrIa 0aaSaaaeaacqqHuoarcaWGnbaabaGaeuiLdqKaamiuaaaadaWcaaqa aiabgkGi2kaadcfaaeaacqGHciITcaWG0baaaaaa@4C0C@
ここで、
Δ P
実験の間の全圧力変化
Δ M
全注入質量
式 7 は、質量変化と圧力変化の関係が完全に増加関数の場合に成り立ちますが、これはその場合です。


図 2. マスフロー曲線 - マスフローの時間変化

インフレーターガス速度

圧力はすぐに一様になるので、式は次のように記述できます。 P i n = P ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadMgacaWGUbaabeaakiabg2da9iaadcfacaGGOaGaamiD aiaacMcaaaa@3D77@ T i n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGPbGaamOBaiaadMgaaeqaaaaa@39CA@ 密度が分かれば、 T i n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGPbGaamOBaiaadMgaaeqaaaaa@39CA@ P ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaai ikaiaadshacaGGPaaaaa@3985@ の関数として表現することができます:(8)
ρ in = P(t) T in R M W in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda WgaaWcbaGaamyAaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaacaWGqbGa aiikaiaadshacaGGPaaabaWaaSGaaeaacaWGubWaaSbaaSqaaiaadM gacaWGUbaabeaakiaadkfaaeaacaWGnbGaam4vamaaBaaaleaacaWG PbGaamOBaaqabaaaaaaaaaa@4606@
さらに、 V i n ( t ) = d m ( t ) d t S ρ i n ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaS baaSqaaiaadMgacaWGUbaabeaakiaacIcacaWG0bGaaiykaiabg2da 9maalaaabaWaaSGaaeaacaWGKbGaamyBaiaacIcacaWG0bGaaiykaa qaaiaadsgacaWG0baaaaqaaiaadofacqaHbpGCdaWgaaWcbaGaamyA aiaad6gaaeqaaOGaaiikaiaadshacaGGPaaaaaaa@49DA@ 、ガス内の音速は:(9)
c i n 2 = γ R M W i n T i n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaS baaSqaaiaadMgacaWGUbaabeaakmaaCaaaleqabaGaaGOmaaaakiab g2da9iabeo7aNnaalaaabaGaamOuaaqaaiaad2eacaWGxbWaaSbaaS qaaiaadMgacaWGUbaabeaaaaGccaWGubWaaSbaaSqaaiaadMgacaWG Ubaabeaaaaa@448F@
また、 V i n > c i n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaS baaSqaaiaadMgacaWGUbaabeaakiabg6da+iaadogadaWgaaWcbaGa amyAaiaad6gaaeqaaaaa@3D4D@ の場合、 V i n = c i n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaS baaSqaaiaadMgacaWGUbaabeaakiabg2da9iaadogadaWgaaWcbaGa amyAaiaad6gaaeqaaaaa@3D4B@ となり、速度は音速となります。
  1. インジェクタの温度が既知の場合:

    d m d t = v γ ( γ 1 ) C V T i n d P d t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaai aadsgacaWGTbaabaGaamizaiaadshaaaGaeyypa0ZaaSaaaeaacaWG 2baabaGaeq4SdC2aaeWaaeaacqaHZoWzcqGHsislcaaIXaaacaGLOa GaayzkaaGaam4qamaaBaaaleaacaWGwbaabeaakiaadsfadaWgaaWc baGaamyAaiaad6gaaeqaaaaakmaalaaabaGaamizaiaadcfaaeaaca WGKbGaamiDaaaaaaa@4B34@

  2. タンク内の温度が既知の場合:

    d m d t = V γ ( γ 1 ) C V T 2 ( T d P d t P d T d t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaai aadsgacaWGTbaabaGaamizaiaadshaaaGaeyypa0ZaaSaaaeaacaWG wbaabaGaeq4SdC2aaeWaaeaacqaHZoWzcqGHsislcaaIXaaacaGLOa GaayzkaaGaam4qamaaBaaaleaacaWGwbaabeaakiaadsfadaahaaWc beqaaiaaikdaaaaaaOWaaeWaaeaacaWGubWaaSaaaeaacaWGKbGaam iuaaqaaiaadsgacaWG0baaaiabgkHiTiaadcfadaWcaaqaaiaadsga caWGubaabaGaamizaiaadshaaaaacaGLOaGaayzkaaaaaa@51C8@ または m = P V ( γ 1 ) C V T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbGaey ypa0ZaaSaaaeaacaWGqbGaamOvaaqaamaabmaabaGaeq4SdCMaeyOe I0IaaGymaaGaayjkaiaawMcaaiaadoeadaWgaaWcbaGaamOvaaqaba GccaWGubaaaaaa@41A0@

    T i n = T 2 γ ( d P d t T d P d t P d T d t ) or T i n = T γ + m γ d T d t d m d t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGubWaaS baaSqaaiaadMgacaWGUbaabeaakiabg2da9maalaaabaGaamivamaa CaaaleqabaGaaGOmaaaaaOqaaiabeo7aNbaadaqadaqaamaalaaaba WaaSaaaeaacaWGKbGaamiuaaqaaiaadsgacaWG0baaaaqaaiaadsfa daWcaaqaaiaadsgacaWGqbaabaGaamizaiaadshaaaGaeyOeI0Iaam iuamaalaaabaGaamizaiaadsfaaeaacaWGKbGaamiDaaaaaaaacaGL OaGaayzkaaGaaGzbVlaab+gacaqGYbGaaGzbVlaadsfadaWgaaWcba GaamyAaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaacaWGubaabaGaeq4S dCgaaiabgUcaRmaalaaabaGaamyBaaqaaiabeo7aNbaadaWcaaqaam aalaaabaGaamizaiaadsfaaeaacaWGKbGaamiDaaaaaeaadaWcaaqa aiaadsgacaWGTbaabaGaamizaiaadshaaaaaaaaa@63C4@

  3. タンク内の温度が一定の場合:

    T i n = T γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGubWaaS baaSqaaiaadMgacaWGUbaabeaakiabg2da9maalaaabaGaamivaaqa aiabeo7aNbaaaaa@3CE4@