/MAT/LAW18 (THERM)

ブロックフォーマットのキーワード この材料則は熱材料を記述します。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW18/mat_IDまたは/MAT/THERM/mat_ID
mat_title
ρ i ρ 0            
ρ 0 C p A B        
fct_IDT T0 FscaleT          
fct_IDsph fct_IDas Fscalesph FscaleE FscaleK    

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
mat_title 材料のタイトル

(文字、最大100文字)

 
ρ i 初期密度

(実数)

[ kg m 3 ]
ρ 0 E.O.S(状態方程式)で使用される基準密度

デフォルト = ρ 0 = ρ i (実数)

[ kg m 3 ]
ρ 0 C p 比熱

(実数)

[ kg s 3 m K ]
A 伝導係数A

(実数)

[ W m 2 K ]
B 伝導係数B

(実数)

 
fct_IDT Tの関数f(t)の識別子。 9
= 0
Tは計算されます
= n
T=T0f(t)

(整数)

 
T0 初期温度

デフォルト = 300K(実数)

[ K ]
FscaleT 時間スケールファクター

(実数)

 
fct_IDsph 温度とエネルギーの関数g(T, E)の識別子 7

(整数)

 
fct_IDas 伝導と温度の関数h(k, T)の識別子

(整数)

 
Fscalesph 温度スケールファクター

(実数)

[ K ]
FscaleE エネルギースケールファクター

(実数)

[ J ]
FscaleK 伝導スケールファクター

(実数)

[ W m 2 K ]

コメント

  1. この材料は以下のいずれかとして使用できます。
    • 純熱学的材料として(行4だけが読み出されます)
    • 境界条件(温度または流束)として(行5を使用します)
  2. k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4Aaaaa@3AC6@ (熱伝導)は、下記のように計算されます:(1)
    k = A + B T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2 da9iaadgeacqGHRaWkcaWGcbGaeyyXICTaamivaaaa@3D7F@
  3. α(熱拡散)は下記のように計算されます:(2)
    α = k / ρ 0 C p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0Jaam4Aaiaac+cacqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWG dbWaaSbaaSqaaiaadchaaeqaaaaa@3ED8@

    ここで、 C p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGWbaabeaaaaa@37E0@ は、定圧における熱容量です。

  4. k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4Aaaaa@3AC6@ (熱伝導)は曲線 f c t _ I D a s = k ( T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzaiaadogacaWG0bGaaGzaVlaac+facaaMb8Uaamysaiaadsea daWgaaWcbaGaamyyaiaadohaaeqaaOGaeyypa0Jaam4AaiaacIcaca WGubGaaiykaaaa@486C@ によって定義されます。
  5. α(熱拡散)は曲線fct_IDsph α = k / ρ 0 C p を使用して d E d T = C p で求められます。
  6. 関数g(T, E)は以下のような曲線になります:

    Image15
    図 1.
  7. fct_IDsph ≠ 0の場合、(3)
    E s p e c i f i c = E int ρ 0 F s c a l e E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaBaaaleaacaWGZbGaamiCaiaadwgacaWGJbGaamyAaiaa dAgacaWGPbGaam4yaaqabaGccqGH9aqpdaWcaaqaamaaliaabaGaam yramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaaGcbaGaeqyWdi3a aSbaaSqaaiaaicdaaeqaaaaaaOqaaiaadAeacaWGZbGaam4yaiaadg gacaWGSbGaamyzamaaBaaaleaacaWGfbaabeaaaaaaaa@5057@

    T = f s p h ( E s p e c i f i c ) F s c a l e s p h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaamivaiabg2da9iGacAgadaWgaaWcbaGaam4CaiaadchacaWGObaa beaakiaacIcacaWGfbWaaSbaaSqaaiaadohacaWGWbGaamyzaiaado gacaWGPbGaamOzaiaadMgacaWGJbaabeaakiaacMcacqGHflY1caGG gbGaai4CaiaacogacaGGHbGaaiiBaiaacwgadaWgaaWcbaGaam4Cai aadchacaWGObaabeaaaaa@542E@

    ここで、 f s p h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaciOzamaaBaaaleaacaWGZbGaamiCaiaadIgaaeqaaaaa@3DC8@ fct_IDsphの関数です。

  8. fct_IDsph = 0の場合、(4)
    T = E int sph

    ここで、 S p h = ρ 0 C p = S p e c i f i c H e a t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadc hacaWGObGaeyypa0JaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaam4q amaaBaaaleaacaWGWbaabeaakiabg2da9iaadofacaWGWbGaamyzai aadogacaWGPbGaamOzaiaadMgacaWGJbGaamisaiaadwgacaWGHbGa amiDaaaa@4A44@

  9. fct_IDT ≠ 0の場合、(5)
    T = f ( T i m e ) T 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=HhbHc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadsfacqGH9aqpciGGMbGaciikaiaadsfacaWGPbGaamyBaiaa dwgacaGGPaGaeyyXICTaamivamaaBaaaleaacaaIWaaabeaaaaa@4622@

    ここで、 T i m e = T i m e F s c a l e T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=HhbHc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadsfacaWGPbGaamyBaiaadwgacqGH9aqpcaWGubGaamyAaiaa d2gacaWGLbGaeyyXICTaamOraiaadohacaWGJbGaamyyaiaadYgaca WGLbWaaSbaaSqaaiaadsfaaeqaaaaa@4B57@ E int = T s p h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiGacMgacaGGUbGaaiiDaaqabaGccqGH9aqpcaWGubGaeyyX ICTaam4CaiaadchacaWGObaaaa@424B@

  10. fct_IDas ≠ 0の場合、
    (6)
    T = T F s c a l e s p h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaamivaiabg2da9maalaaabaGaamivaaqaaiaadAeacaWGZbGaam4y aiaadggacaWGSbGaamyzamaaBaaaleaacaWGZbGaamiCaiaadIgaae qaaaaaaaa@4510@

    A = f a s ( T ) F s c a l e E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadgeacqGH9aqpciGGMbWaaSbaaSqaaiaadggacaWGZbaabeaa kmaabmaabaGaamivaaGaayjkaiaawMcaaiabgwSixlaadAeacaWGZb Gaam4yaiaadggacaWGSbGaamyzamaaBaaaleaacaWGfbaabeaaaaa@4A22@ B = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiabg2 da9iaaicdaaaa@387E@

    ここで、 f a s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiGacAgadaWgaaWcbaGaamyyaiaadohaaeqaaaaa@3D3E@ fct_IDasの関数です。