/EOS/NASG ブロックフォーマットのキーワード NASG(Noble-Abel-Stiffened-Gas)状態方程式を記述します。 フォーマット (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) /EOS/NASG/mat_ID/unit_ID eos_title b γ P∞ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbGaeyOhIukaaa@3B1D@ q Psh P0 Cv ρ 0 定義 フィールド 内容 SI単位の例 mat_ID 材料識別子(整数、最大10桁) unit_ID 単位識別子。(整数、最大10桁) eos_title EOSのタイトル(文字、最大100文字) b 補容積(実数) [ m 3 kg ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaiyBamaaCaaaleqabaGaai4maaaaaOqaaiaacUgacaGG NbaaaaGaay5waiaaw2faaaaa@3C19@ γ 熱容量の比 γ = C p C v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo7aNjabg2da9maalaaapaqaa8qacaWGdbWdamaaBaaaleaa peGaamiCaaWdaeqaaaGcbaWdbiaadoeapaWaaSbaaSqaa8qacaWG2b aapaqabaaaaaaa@3DA9@ (実数) P ∞ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbGaeyOhIukaaa@3B1D@ 剛性パラメータ(実数) [ Pa ] q ヒートボンド(実数) [ J kg ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaeOsaaqaaiaabUgacaqGNbaaaaGaay5waiaaw2faaaaa @3B05@ Psh 圧力シフト(実数) [ Pa ] P0 初期圧力(実数) [ Pa ] Cv 一定体積における熱容量(実数) [ J kg⋅K ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaabQeaaeaacaqGRbGaae4zaiabgwSixlaabUeaaaaacaGL BbGaayzxaaaaaa@3DB3@ ρ 0 参照密度デフォルト = 材料密度(実数) [ kg m 3 ] 例 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /UNIT/1 unit for mat kg m s #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /MAT/HYDRO/7/1 WATER # RHO_I RHO_0 957.74 0 # NU PMIN 0 0 /EOS/NASG/7/1 Noble-Abel-Stiffened-Gas EoS for WATER (O.Le Metayer, R.Saurel) # b GAMMA PSTAR Q 6.61E-4 1.19 7028.00E+5 -1177788 # Psh P0 Cv Rho0 0.0 1.0453E5 3610 957.74 /EULER/MAT/7/1 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #enddata コメント NASG EOS(Noble-Abel-Stiffened-Gas状態方程式)は、Stiffened-Gas状態方程式とNoble-Abel状態方程式に基づいています。(1) ( P + P ∞ ) ( v − b ) = ( γ − 1 ) C v T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbmaabmaabaGaamiuaiabgUcaRiaadcfadaWgaaWcbaGaeyOhIuka beaaaOGaayjkaiaawMcaamaabmaapaqaa8qacaWG2bGaeyOeI0Iaam OyaaGaayjkaiaawMcaaiabg2da9maabmaabaGaeq4SdCMaeyOeI0Ia aGymaaGaayjkaiaawMcaaiaadoeadaWgaaWcbaGaamODaaqabaGcca WGubaaaa@4962@ ここで、 v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadAhaaaa@377A@ 比容積 b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaadkgaaaa@3766@ 補容積 C v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadoeadaWgaaWcbaGaamODaaqabaaaaa@386E@ 一定体積における熱容量 T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaadkgaaaa@3766@ 温度 γ = C p C v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo7aNjabg2da9maalaaapaqaa8qacaWGdbWdamaaBaaaleaa peGaamiCaaWdaeqaaaGcbaWdbiaadoeapaWaaSbaaSqaa8qacaWG2b aapaqabaaaaaaa@3DA9@ このEOSは、簡単な定式化で以下の2つの主な分子効果をまとめています。 攪拌 引力 / 斥力効果 以前のフォーム P = P ( v , T ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpciGGqbWaaeWaa8aabaWdbiaadAhacaGGSaGa amivaaGaayjkaiaawMcaaaaa@3D5C@ は、 P = P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpciGGqbWaaeWaa8aabaWdbiabeY7aTjaacYca caWGfbaacaGLOaGaayzkaaaaaa@3E08@ フォームで書き出すことができます。 ここで、 µ = ρ ρ 0 − 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadwlacqGH9aqpdaWcaaWdaeaapeGaeqyWdihapaqaa8qacqaH bpGCpaWaaSbaaSqaa8qacaaIWaaapaqabaaaaOWdbiabgkHiTiaaig daaaa@3F63@ 、 E = E i n t V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadweacqGH9aqpdaWcaaWdaeaapeGaamyra8aadaWgaaWcbaWd biaadMgacaWGUbGaamiDaaWdaeqaaaGcbaWdbiaadAfapaWaaSbaaS qaa8qacaaIWaaapaqabaaaaaaa@3E85@ です。 これにより、次が与えられます。 P ( μ , E ) = ( γ − 1 ) ( 1 + μ ) ( E − ρ 0 q ) 1 − b ρ 0 ( 1 + μ ) − γ P ∞ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiGaccfadaqadaWdaeaapeGaeqiVd0MaaiilaiaadweaaiaawIca caGLPaaacqGH9aqpdaWcaaWdaeaapeWaaeWaa8aabaWdbiabeo7aNj abgkHiTiaaigdaaiaawIcacaGLPaaadaqadaWdaeaapeGaaGymaiab gUcaRiabeY7aTbGaayjkaiaawMcaamaabmaabaGaamyraiabgkHiTi abeg8aYnaaBaaaleaacaaIWaaabeaakiaadghaaiaawIcacaGLPaaa a8aabaWdbiaaigdacqGHsislcaWGIbGaeqyWdi3damaaBaaaleaape GaaGimaaWdaeqaaOWdbmaabmaapaqaa8qacaaIXaGaey4kaSIaeqiV d0gacaGLOaGaayzkaaaaaiabgkHiTiabeo7aNjaadcfadaWgaaWcba GaeyOhIukabeaaaaa@5DD7@ 他のEOSとの比較を示します: Noble-Able NASG Stiffened-Gas P ( v , T ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiGaccfadaqadaWdaeaapeGaamODaiaacYcacaWGubaacaGLOaGa ayzkaaaaaa@3B81@ P ( v − b ) = R T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfadaqadaWdaeaapeGaamODaiabgkHiTiaadkgaaiaawIca caGLPaaacqGH9aqpcaWGsbGaamivaaaa@3E81@ ( P + P ∞ ) ( v − b ) = ( γ − 1 ) C v T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbmaabmaabaGaamiuaiabgUcaRiaadcfadaWgaaWcbaGaeyOhIuka beaaaOGaayjkaiaawMcaamaabmaapaqaa8qacaWG2bGaeyOeI0Iaam OyaaGaayjkaiaawMcaaiabg2da9maabmaabaGaeq4SdCMaeyOeI0Ia aGymaaGaayjkaiaawMcaaiaadoeadaWgaaWcbaGaamODaaqabaGcca WGubaaaa@4962@ ( P + P ∞ ) v = ( γ − 1 ) C v T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbmaabmaabaGaamiuaiabgUcaRiaadcfadaWgaaWcbaGaeyOhIuka beaaaOGaayjkaiaawMcaaiaadAhacqGH9aqpdaqadaqaaiabeo7aNj abgkHiTiaaigdaaiaawIcacaGLPaaacaWGdbWaaSbaaSqaaiaadAha aeqaaOGaamivaaaa@45E6@ P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiGaccfadaqadaWdaeaapeGaeqiVd0MaaiilaiaadweaaiaawIca caGLPaaaaaa@3C2D@ P = ( γ − 1 ) ( 1 + μ ) E 1 − b ρ 0 ( 1 + μ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpdaWcaaWdaeaapeWaaeWaa8aabaWdbiabeo7a NjabgkHiTiaaigdaaiaawIcacaGLPaaadaqadaWdaeaapeGaaGymai abgUcaRiabeY7aTbGaayjkaiaawMcaaiaadweaa8aabaWdbiaaigda cqGHsislcaWGIbGaeqyWdi3damaaBaaaleaapeGaaGimaaWdaeqaaO Wdbmaabmaapaqaa8qacaaIXaGaey4kaSIaeqiVd0gacaGLOaGaayzk aaaaaaaa@4DDC@ P = E − ρ 0 q 1 1 + µ − ρ 0 b ( γ − 1 ) − γ P ∞ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpdaWcaaWdaeaapeGaamyraiabgkHiTiabeg8a Y9aadaWgaaWcbaWdbiaaicdaa8aabeaakiaadghaaeaapeWaaSaaae aacaaIXaaabaGaaGymaiabgUcaRiaadwlaaaGaeyOeI0IaeqyWdi3d amaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaadkgaaaWaaeWaa8aaba Wdbiabeo7aNjabgkHiTiaaigdaaiaawIcacaGLPaaacqGHsislcqaH ZoWzcaWGqbWaaSbaaSqaaiabg6HiLcqabaaaaa@5084@ P = ( γ − 1 ) ( 1 + μ ) E − γ P ∞ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpdaqadaWdaeaapeGaeq4SdCMaeyOeI0IaaGym aaGaayjkaiaawMcaamaabmaapaqaa8qacaaIXaGaey4kaSIaeqiVd0 gacaGLOaGaayzkaaGaamyraiabgkHiTiabeo7aNjaadcfadaWgaaWc baGaeyOhIukabeaaaaa@481C@ c 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadogadaWgaaWcbaGaaGimaaqabaaaaa@384D@ c 0 = γ P ( 1 − b ρ ) ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadogadaWgaaWcbaGaaGimaaqabaGccqGH9aqpdaGcaaWdaeaa peWaaSaaa8aabaWdbiabeo7aNjaadcfaa8aabaWdbmaabmaapaqaa8 qacaaIXaGaeyOeI0IaamOyaiabeg8aYbGaayjkaiaawMcaaiabeg8a YbaaaSqabaaaaa@4418@ c 0 = γ ( P + P ∞ ) ( 1 − b ρ ) ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadogadaWgaaWcbaGaaGimaaqabaGccqGH9aqpdaGcaaWdaeaa peWaaSaaa8aabaWdbiabeo7aNnaabmaabaGaamiuaiabgUcaRiaadc fadaWgaaWcbaGaeyOhIukabeaaaOGaayjkaiaawMcaaaWdaeaapeWa aeWaa8aabaWdbiaaigdacqGHsislcaWGIbGaeqyWdihacaGLOaGaay zkaaGaeqyWdihaaaWcbeaaaaa@48FF@ c 0 = γ ( P + P ∞ ) ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadogadaWgaaWcbaGaaGimaaqabaGccqGH9aqpdaGcaaWdaeaa peWaaSaaa8aabaWdbiabeo7aNnaabmaabaGaamiuaiabgUcaRiaadc fadaWgaaWcbaGaeyOhIukabeaaaOGaayjkaiaawMcaaaWdaeaapeGa eqyWdihaaaWcbeaaaaa@4308@ E 0 | P = P 0 , ρ = ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbmaaeiaabaGaamyramaaBaaaleaacaaIWaaabeaaaOGaayjcSdWa aSbaaSqaaiaadcfacqGH9aqpcaWGqbWaaSbaaWqaaiaaicdaaeqaaS Gaaiilaiabeg8aYjabg2da9iabeg8aYnaaBaaameaacaaIWaaabeaa aSqabaaaaa@43C5@ P 0 ( 1 − b ρ 0 ) γ − 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbmaalaaapaqaa8qacaWGqbWdamaaBaaaleaapeGaaGimaaWdaeqa aOWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamOyaiabeg8aY9aada WgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcacaGLPaaaa8aabaWd biabeo7aNjabgkHiTiaaigdaaaaaaa@4344@ ( P 0 + γ P ∞ ) ( 1 − b ρ 0 ) γ − 1 + q ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbmaalaaapaqaa8qadaqadaqaaiaadcfapaWaaSbaaSqaa8qacaaI WaaapaqabaGccqGHRaWkcqaHZoWzcaWGqbWaaSbaaSqaaiabg6HiLc qabaaak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbiaaigdacqGHsisl caWGIbGaeqyWdi3damaaBaaaleaapeGaaGimaaWdaeqaaaGcpeGaay jkaiaawMcaaaWdaeaapeGaeq4SdCMaeyOeI0IaaGymaaaacqGHRaWk caWGXbGaeqyWdi3damaaBaaaleaapeGaaGimaaWdaeqaaaaa@4E7E@ ( P 0 + γ P ∞ ) γ − 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbmaalaaapaqaa8qadaqadaqaaiaadcfapaWaaSbaaSqaa8qacaaI WaaapaqabaGccqGHRaWkcqaHZoWzcaWGqbWaaSbaaSqaaiabg6HiLc qabaaak8qacaGLOaGaayzkaaaapaqaa8qacqaHZoWzcqGHsislcaaI Xaaaaaaa@42AD@ 初期状態は入力パラメータから計算されます: T 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGubWaaS baaSqaaiaaicdaaeqaaaaa@3927@ 以下より: v ( P , T ) = ( γ - 1 ) C v T P + P ∞ + b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bWaae WaaeaacaWGqbGaaiilaiaadsfaaiaawIcacaGLPaaacqGH9aqpdaWc aaqaamaabmaabaGaeq4SdCMaaeylaiaaigdaaiaawIcacaGLPaaaca WGdbWaaSbaaSqaaiaadAhaaeqaaOGaamivaaqaaiaadcfacqGHRaWk caWGqbWaaSbaaSqaaiabg6HiLcqabaaaaOGaey4kaSIaamOyaaaa@4AC9@ ここで、 P = P 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey ypa0JaamiuamaaBaaaleaacaaIWaaabeaaaaa@3AFE@ T = T 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGubGaey ypa0JaamivamaaBaaaleaacaaIWaaabeaaaaa@3B06@ E 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGubWaaS baaSqaaiaaicdaaeqaaaaa@3927@ 以下より: e ( P , T ) = P + γ P ∞ γ − 1 ( v − b ) + q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGLbWaae WaaeaacaWGqbGaaiilaiaadsfaaiaawIcacaGLPaaacqGH9aqpdaWc aaqaaiaadcfacqGHRaWkcqaHZoWzcaWGqbWaaSbaaSqaaiabg6HiLc qabaaakeaacqaHZoWzcqGHsislcaaIXaaaamaabmaabaGaamODaiab gkHiTiaadkgaaiaawIcacaGLPaaacqGHRaWkcaWGXbaaaa@4CA8@ ここで、 P = P 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey ypa0JaamiuamaaBaaaleaacaaIWaaabeaaaaa@3AFE@ v = 1 ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bGaey ypa0ZaaSaaaeaacaaIXaaabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqa aaaaaaa@3CDA@ E ( P , T ) = ρ 0 e ( P , T ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaacI cacaWGqbGaaiilaiaadsfacaGGPaGaeyypa0JaeqyWdi3aaSbaaSqa aiaaicdaaeqaaOGaamyzaiaacIcacaWGqbGaaiilaiaadsfacaGGPa aaaa@42CF@ エンタルピーは以下より計算できます:(2) h ( P , T ) = γ C v T + b P + q ∞ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGObWaae WaaeaacaWGqbGaaiilaiaadsfaaiaawIcacaGLPaaacqGH9aqpcqaH ZoWzcaWGdbWaaSbaaSqaaiaadAhaaeqaaOGaamivaiabgUcaRiaadk gacaWGqbGaey4kaSIaamyCamaaBaaaleaacqGHEisPaeqaaaaa@47CE@ P ∞ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbGaeyOhIukaaa@3B1D@ パラメータは、以下を使用して計算できます:(3) P ∞ = ρ 0 c 0 2 ( 1 − b ρ 0 ) γ − P 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacqGHEisPaeqaaOGaeyypa0ZaaSaaaeaacqaHbpGCdaWgaaWc baGaaGimaaqabaGccaWGJbWaaSbaaSqaaiaaicdaaeqaaOWaaWbaaS qabeaacaaIYaaaaOWaaeWaaeaacaaIXaGaeyOeI0IaamOyaiabeg8a YnaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaaqaaiabeo7aNb aacqGHsislcaWGqbWaaSbaaSqaaiaaicdaaeqaaaaa@4A1A@ ここで、 c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaadkgaaaa@3766@ は、材料内での音速です。 Radiossにより流体力学的圧力の計算に用いられ、右記の材料則と適合性のある状態方程式。 /MAT/LAW3 (HYDPLA) /MAT/LAW4 (HYD_JCOOK) /MAT/LAW6 (HYDROまたはHYD_VISC) /MAT/LAW10 (DPRAG1) /MAT/LAW12 (3D_COMP) /MAT/LAW49 (STEINB) /MAT/LAW102 (DPRAG2) /MAT/LAW103 (HENSEL-SPITTEL) 表 1. ドデカンの実験データ(単位: kg、m、秒) 液相 蒸気相 Cp 2608.0 2063.0 Cv 2393.0 2016.0 γ 1.09 1.02 P ∞ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbGaeyOhIukaaa@3B1D@ 1159.0e+5 0.0 b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaadkgaaaa@3766@ 7.51e-4 0.0 q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaadkgaaaa@3766@ -794696.0 -2685610.0 液相の参照状態: ρ 0 = 589.73 kg m 3 , P 0 = 112800 Pa, c 0 = 620.4 m s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaicdaaeqaaOGaeyypa0JaaGynaiaaiIdacaaI5aGaaiOl aiaaiEdacaaIZaGaaeiiamaalaaabaGaae4AaiaabEgaaeaacaqGTb WaaWbaaSqabeaacaqGZaaaaaaakiaacYcacaqGGaGaamiuamaaBaaa leaacaaIWaaabeaakiabg2da9iaaigdacaaIXaGaaGOmaiaaiIdaca aIWaGaaGimaiaabccacaqGqbGaaeyyaiaabYcacaqGGaGaam4yamaa BaaaleaacaaIWaaabeaakiabg2da9iaaiAdacaaIYaGaaGimaiaac6 cacaaI0aGaaeiiamaalaaabaGaaeyBaaqaaiaabohaaaaaaa@57D8@ 有効な温度範囲: [300 - 500 K] 表 2. 水の実験データ(単位: kg、m、秒) 液相 蒸気相 Cp 4285.0 1401.0 Cv 3610.0 955.0 γ 1.19 1.47 P ∞ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbGaeyOhIukaaa@3B1D@ 7028.0e+5 0.0 b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaadkgaaaa@3766@ 6.61e-4 0.0 q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaadkgaaaa@3766@ -1177788.0 2077616.0 液相の参照状態: ρ 0 = 957.74 kg m 3 , P 0 = 104530 Pa, c 0 = 1542 m s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaicdaaeqaaOGaeyypa0JaaGyoaiaaiwdacaaI3aGaaiOl aiaaiEdacaaI0aGaaeiiamaalaaabaGaae4AaiaabEgaaeaacaqGTb WaaWbaaSqabeaacaqGZaaaaaaakiaacYcacaqGGaGaamiuamaaBaaa leaacaaIWaaabeaakiabg2da9iaaigdacaaIWaGaaGinaiaaiwdaca aIZaGaaGimaiaabccacaqGqbGaaeyyaiaabYcacaqGGaGaam4yamaa BaaaleaacaaIWaaabeaakiabg2da9iaaigdacaaI1aGaaGinaiaaik dacaqGGaWaaSaaaeaacaqGTbaabaGaae4Caaaaaaa@5727@ 妥当性: T(300~500Kの範囲内) 1 O Le Métayer, Richard Saurel, “The Noble-Abel Stiffened-Gas equation of state”, HAL Id: hal-013059742 J.R.Simoes-Moreira, ”Adiabatic evaporation waves”, Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, New-York (1994)3 R. Oldenbourg, ”Properties of water and steam in SI-units”, Springer-Verlag Berlin Heidelberg, New-York (1989)