/EOS/NASG

ブロックフォーマットのキーワード NASG(Noble-Abel-Stiffened-Gas)状態方程式を記述します。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/EOS/NASG/mat_ID/unit_ID
eos_title
b γ P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbGaeyOhIukaaa@3B1D@ q  
Psh P0 Cv ρ 0  

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID 単位識別子

(整数、最大10桁)

 
eos_title EOSのタイトル

(文字、最大100文字)

 
b 補容積

(実数)

[ m 3 kg ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaiyBamaaCaaaleqabaGaai4maaaaaOqaaiaacUgacaGG NbaaaaGaay5waiaaw2faaaaa@3C19@
γ 熱容量の比 γ = C p C v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo7aNjabg2da9maalaaapaqaa8qacaWGdbWdamaaBaaaleaa peGaamiCaaWdaeqaaaGcbaWdbiaadoeapaWaaSbaaSqaa8qacaWG2b aapaqabaaaaaaa@3DA9@

(実数)

 
P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbGaeyOhIukaaa@3B1D@ 剛性パラメータ

(実数)

[ Pa ]
q ヒートボンド

(実数)

[ J kg ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaeOsaaqaaiaabUgacaqGNbaaaaGaay5waiaaw2faaaaa @3B05@
Psh 圧力シフト

(実数)

[ Pa ]
P0 初期圧力

(実数)

[ Pa ]
Cv 一定体積における熱容量

(実数)

[ J kgK ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaabQeaaeaacaqGRbGaae4zaiabgwSixlaabUeaaaaacaGL BbGaayzxaaaaaa@3DB3@
ρ 0 参照密度

デフォルト = 材料密度(実数)

[ kg m 3 ]

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  kg                   m                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/HYDRO/7/1
WATER
#              RHO_I               RHO_0
              957.74                   0
#                 NU                PMIN
                   0                   0
/EOS/NASG/7/1
Noble-Abel-Stiffened-Gas EoS for WATER  (O.Le Metayer, R.Saurel)
#                  b               GAMMA               PSTAR                   Q      
             6.61E-4                1.19          7028.00E+5            -1177788 
#                Psh                  P0                  Cv                Rho0      
                 0.0            1.0453E5                3610              957.74
/EULER/MAT/7/1

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata

コメント

  1. NASG EOS(Noble-Abel-Stiffened-Gas状態方程式)は、Stiffened-Gas状態方程式とNoble-Abel状態方程式に基づいています。(1)
    ( P + P ) ( v b ) = ( γ 1 ) C v T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbmaabmaabaGaamiuaiabgUcaRiaadcfadaWgaaWcbaGaeyOhIuka beaaaOGaayjkaiaawMcaamaabmaapaqaa8qacaWG2bGaeyOeI0Iaam OyaaGaayjkaiaawMcaaiabg2da9maabmaabaGaeq4SdCMaeyOeI0Ia aGymaaGaayjkaiaawMcaaiaadoeadaWgaaWcbaGaamODaaqabaGcca WGubaaaa@4962@
    ここで、
    v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadAhaaaa@377A@
    比容積
    b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaadkgaaaa@3766@
    補容積
    C v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadoeadaWgaaWcbaGaamODaaqabaaaaa@386E@
    一定体積における熱容量
    T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaadkgaaaa@3766@
    温度
    γ = C p C v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeo7aNjabg2da9maalaaapaqaa8qacaWGdbWdamaaBaaaleaa peGaamiCaaWdaeqaaaGcbaWdbiaadoeapaWaaSbaaSqaa8qacaWG2b aapaqabaaaaaaa@3DA9@
    このEOSは、簡単な定式化で以下の2つの主な分子効果をまとめています。
    • 攪拌
    • 引力 / 斥力効果

    以前のフォーム P = P ( v , T ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpciGGqbWaaeWaa8aabaWdbiaadAhacaGGSaGa amivaaGaayjkaiaawMcaaaaa@3D5C@ は、 P = P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpciGGqbWaaeWaa8aabaWdbiabeY7aTjaacYca caWGfbaacaGLOaGaayzkaaaaaa@3E08@ フォームで書き出すことができます。

    ここで、 µ = ρ ρ 0 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadwlacqGH9aqpdaWcaaWdaeaapeGaeqyWdihapaqaa8qacqaH bpGCpaWaaSbaaSqaa8qacaaIWaaapaqabaaaaOWdbiabgkHiTiaaig daaaa@3F63@ E = E i n t V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadweacqGH9aqpdaWcaaWdaeaapeGaamyra8aadaWgaaWcbaWd biaadMgacaWGUbGaamiDaaWdaeqaaaGcbaWdbiaadAfapaWaaSbaaS qaa8qacaaIWaaapaqabaaaaaaa@3E85@ です。

    これにより、次が与えられます。 P ( μ , E ) = ( γ 1 ) ( 1 + μ ) ( E ρ 0 q ) 1 b ρ 0 ( 1 + μ ) γ P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiGaccfadaqadaWdaeaapeGaeqiVd0MaaiilaiaadweaaiaawIca caGLPaaacqGH9aqpdaWcaaWdaeaapeWaaeWaa8aabaWdbiabeo7aNj abgkHiTiaaigdaaiaawIcacaGLPaaadaqadaWdaeaapeGaaGymaiab gUcaRiabeY7aTbGaayjkaiaawMcaamaabmaabaGaamyraiabgkHiTi abeg8aYnaaBaaaleaacaaIWaaabeaakiaadghaaiaawIcacaGLPaaa a8aabaWdbiaaigdacqGHsislcaWGIbGaeqyWdi3damaaBaaaleaape GaaGimaaWdaeqaaOWdbmaabmaapaqaa8qacaaIXaGaey4kaSIaeqiV d0gacaGLOaGaayzkaaaaaiabgkHiTiabeo7aNjaadcfadaWgaaWcba GaeyOhIukabeaaaaa@5DD7@

  2. 他のEOSとの比較を示します:
    Noble-Able NASG Stiffened-Gas
    P ( v , T ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiGaccfadaqadaWdaeaapeGaamODaiaacYcacaWGubaacaGLOaGa ayzkaaaaaa@3B81@ P ( v b ) = R T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfadaqadaWdaeaapeGaamODaiabgkHiTiaadkgaaiaawIca caGLPaaacqGH9aqpcaWGsbGaamivaaaa@3E81@ ( P + P ) ( v b ) = ( γ 1 ) C v T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbmaabmaabaGaamiuaiabgUcaRiaadcfadaWgaaWcbaGaeyOhIuka beaaaOGaayjkaiaawMcaamaabmaapaqaa8qacaWG2bGaeyOeI0Iaam OyaaGaayjkaiaawMcaaiabg2da9maabmaabaGaeq4SdCMaeyOeI0Ia aGymaaGaayjkaiaawMcaaiaadoeadaWgaaWcbaGaamODaaqabaGcca WGubaaaa@4962@ ( P + P ) v = ( γ 1 ) C v T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbmaabmaabaGaamiuaiabgUcaRiaadcfadaWgaaWcbaGaeyOhIuka beaaaOGaayjkaiaawMcaaiaadAhacqGH9aqpdaqadaqaaiabeo7aNj abgkHiTiaaigdaaiaawIcacaGLPaaacaWGdbWaaSbaaSqaaiaadAha aeqaaOGaamivaaaa@45E6@
    P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiGaccfadaqadaWdaeaapeGaeqiVd0MaaiilaiaadweaaiaawIca caGLPaaaaaa@3C2D@ P = ( γ 1 ) ( 1 + μ ) E 1 b ρ 0 ( 1 + μ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpdaWcaaWdaeaapeWaaeWaa8aabaWdbiabeo7a NjabgkHiTiaaigdaaiaawIcacaGLPaaadaqadaWdaeaapeGaaGymai abgUcaRiabeY7aTbGaayjkaiaawMcaaiaadweaa8aabaWdbiaaigda cqGHsislcaWGIbGaeqyWdi3damaaBaaaleaapeGaaGimaaWdaeqaaO Wdbmaabmaapaqaa8qacaaIXaGaey4kaSIaeqiVd0gacaGLOaGaayzk aaaaaaaa@4DDC@ P = E ρ 0 q 1 1 + µ ρ 0 b ( γ 1 ) γ P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpdaWcaaWdaeaapeGaamyraiabgkHiTiabeg8a Y9aadaWgaaWcbaWdbiaaicdaa8aabeaakiaadghaaeaapeWaaSaaae aacaaIXaaabaGaaGymaiabgUcaRiaadwlaaaGaeyOeI0IaeqyWdi3d amaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaadkgaaaWaaeWaa8aaba Wdbiabeo7aNjabgkHiTiaaigdaaiaawIcacaGLPaaacqGHsislcqaH ZoWzcaWGqbWaaSbaaSqaaiabg6HiLcqabaaaaa@5084@ P = ( γ 1 ) ( 1 + μ ) E γ P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpdaqadaWdaeaapeGaeq4SdCMaeyOeI0IaaGym aaGaayjkaiaawMcaamaabmaapaqaa8qacaaIXaGaey4kaSIaeqiVd0 gacaGLOaGaayzkaaGaamyraiabgkHiTiabeo7aNjaadcfadaWgaaWc baGaeyOhIukabeaaaaa@481C@
    c 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadogadaWgaaWcbaGaaGimaaqabaaaaa@384D@ c 0 = γ P ( 1 b ρ ) ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadogadaWgaaWcbaGaaGimaaqabaGccqGH9aqpdaGcaaWdaeaa peWaaSaaa8aabaWdbiabeo7aNjaadcfaa8aabaWdbmaabmaapaqaa8 qacaaIXaGaeyOeI0IaamOyaiabeg8aYbGaayjkaiaawMcaaiabeg8a YbaaaSqabaaaaa@4418@ c 0 = γ ( P + P ) ( 1 b ρ ) ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadogadaWgaaWcbaGaaGimaaqabaGccqGH9aqpdaGcaaWdaeaa peWaaSaaa8aabaWdbiabeo7aNnaabmaabaGaamiuaiabgUcaRiaadc fadaWgaaWcbaGaeyOhIukabeaaaOGaayjkaiaawMcaaaWdaeaapeWa aeWaa8aabaWdbiaaigdacqGHsislcaWGIbGaeqyWdihacaGLOaGaay zkaaGaeqyWdihaaaWcbeaaaaa@48FF@ c 0 = γ ( P + P ) ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadogadaWgaaWcbaGaaGimaaqabaGccqGH9aqpdaGcaaWdaeaa peWaaSaaa8aabaWdbiabeo7aNnaabmaabaGaamiuaiabgUcaRiaadc fadaWgaaWcbaGaeyOhIukabeaaaOGaayjkaiaawMcaaaWdaeaapeGa eqyWdihaaaWcbeaaaaa@4308@
    E 0 | P = P 0 , ρ = ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbmaaeiaabaGaamyramaaBaaaleaacaaIWaaabeaaaOGaayjcSdWa aSbaaSqaaiaadcfacqGH9aqpcaWGqbWaaSbaaWqaaiaaicdaaeqaaS Gaaiilaiabeg8aYjabg2da9iabeg8aYnaaBaaameaacaaIWaaabeaa aSqabaaaaa@43C5@ P 0 ( 1 b ρ 0 ) γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbmaalaaapaqaa8qacaWGqbWdamaaBaaaleaapeGaaGimaaWdaeqa aOWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamOyaiabeg8aY9aada WgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcacaGLPaaaa8aabaWd biabeo7aNjabgkHiTiaaigdaaaaaaa@4344@ ( P 0 + γ P ) ( 1 b ρ 0 ) γ 1 + q ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbmaalaaapaqaa8qadaqadaqaaiaadcfapaWaaSbaaSqaa8qacaaI WaaapaqabaGccqGHRaWkcqaHZoWzcaWGqbWaaSbaaSqaaiabg6HiLc qabaaak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbiaaigdacqGHsisl caWGIbGaeqyWdi3damaaBaaaleaapeGaaGimaaWdaeqaaaGcpeGaay jkaiaawMcaaaWdaeaapeGaeq4SdCMaeyOeI0IaaGymaaaacqGHRaWk caWGXbGaeqyWdi3damaaBaaaleaapeGaaGimaaWdaeqaaaaa@4E7E@ ( P 0 + γ P ) γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbmaalaaapaqaa8qadaqadaqaaiaadcfapaWaaSbaaSqaa8qacaaI WaaapaqabaGccqGHRaWkcqaHZoWzcaWGqbWaaSbaaSqaaiabg6HiLc qabaaak8qacaGLOaGaayzkaaaapaqaa8qacqaHZoWzcqGHsislcaaI Xaaaaaaa@42AD@
  3. 初期状態は入力パラメータから計算されます:

    T 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGubWaaS baaSqaaiaaicdaaeqaaaaa@3927@ 以下より: v ( P , T ) = ( γ - 1 ) C v T P + P + b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bWaae WaaeaacaWGqbGaaiilaiaadsfaaiaawIcacaGLPaaacqGH9aqpdaWc aaqaamaabmaabaGaeq4SdCMaaeylaiaaigdaaiaawIcacaGLPaaaca WGdbWaaSbaaSqaaiaadAhaaeqaaOGaamivaaqaaiaadcfacqGHRaWk caWGqbWaaSbaaSqaaiabg6HiLcqabaaaaOGaey4kaSIaamOyaaaa@4AC9@

    ここで、
    P = P 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey ypa0JaamiuamaaBaaaleaacaaIWaaabeaaaaa@3AFE@
    T = T 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGubGaey ypa0JaamivamaaBaaaleaacaaIWaaabeaaaaa@3B06@

    E 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGubWaaS baaSqaaiaaicdaaeqaaaaa@3927@ 以下より: e ( P , T ) = P + γ P γ 1 ( v b ) + q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGLbWaae WaaeaacaWGqbGaaiilaiaadsfaaiaawIcacaGLPaaacqGH9aqpdaWc aaqaaiaadcfacqGHRaWkcqaHZoWzcaWGqbWaaSbaaSqaaiabg6HiLc qabaaakeaacqaHZoWzcqGHsislcaaIXaaaamaabmaabaGaamODaiab gkHiTiaadkgaaiaawIcacaGLPaaacqGHRaWkcaWGXbaaaa@4CA8@

    ここで、
    P = P 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey ypa0JaamiuamaaBaaaleaacaaIWaaabeaaaaa@3AFE@
    v = 1 ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bGaey ypa0ZaaSaaaeaacaaIXaaabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqa aaaaaaa@3CDA@
    E ( P , T ) = ρ 0 e ( P , T ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaacI cacaWGqbGaaiilaiaadsfacaGGPaGaeyypa0JaeqyWdi3aaSbaaSqa aiaaicdaaeqaaOGaamyzaiaacIcacaWGqbGaaiilaiaadsfacaGGPa aaaa@42CF@
  4. エンタルピーは以下より計算できます:(2)
    h ( P , T ) = γ C v T + b P + q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGObWaae WaaeaacaWGqbGaaiilaiaadsfaaiaawIcacaGLPaaacqGH9aqpcqaH ZoWzcaWGdbWaaSbaaSqaaiaadAhaaeqaaOGaamivaiabgUcaRiaadk gacaWGqbGaey4kaSIaamyCamaaBaaaleaacqGHEisPaeqaaaaa@47CE@
  5. P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbGaeyOhIukaaa@3B1D@ パラメータは、以下を使用して計算できます:(3)
    P = ρ 0 c 0 2 ( 1 b ρ 0 ) γ P 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacqGHEisPaeqaaOGaeyypa0ZaaSaaaeaacqaHbpGCdaWgaaWc baGaaGimaaqabaGccaWGJbWaaSbaaSqaaiaaicdaaeqaaOWaaWbaaS qabeaacaaIYaaaaOWaaeWaaeaacaaIXaGaeyOeI0IaamOyaiabeg8a YnaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaaqaaiabeo7aNb aacqGHsislcaWGqbWaaSbaaSqaaiaaicdaaeqaaaaa@4A1A@

    ここで、 c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaadkgaaaa@3766@ は、材料内での音速です。

  6. Radiossにより流体力学的圧力の計算に用いられ、右記の材料則と適合性のある状態方程式。
    • /MAT/LAW3 (HYDPLA)
    • /MAT/LAW4 (HYD_JCOOK)
    • /MAT/LAW6 (HYDROまたはHYD_VISC)
    • /MAT/LAW10 (DPRAG1)
    • /MAT/LAW12 (3D_COMP)
    • /MAT/LAW49 (STEINB)
    • /MAT/LAW102 (DPRAG2)
    • /MAT/LAW103 (HENSEL-SPITTEL)
表 1. ドデカンの実験データ(単位: kg、m、秒)
  液相 蒸気相
Cp 2608.0 2063.0
Cv 2393.0 2016.0
γ 1.09 1.02
P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbGaeyOhIukaaa@3B1D@ 1159.0e+5 0.0
b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaadkgaaaa@3766@ 7.51e-4 0.0
q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaadkgaaaa@3766@ -794696.0 -2685610.0

液相の参照状態: ρ 0 = 589.73   kg m 3 ,   P 0 = 112800  Pa,  c 0 = 620.4   m s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaicdaaeqaaOGaeyypa0JaaGynaiaaiIdacaaI5aGaaiOl aiaaiEdacaaIZaGaaeiiamaalaaabaGaae4AaiaabEgaaeaacaqGTb WaaWbaaSqabeaacaqGZaaaaaaakiaacYcacaqGGaGaamiuamaaBaaa leaacaaIWaaabeaakiabg2da9iaaigdacaaIXaGaaGOmaiaaiIdaca aIWaGaaGimaiaabccacaqGqbGaaeyyaiaabYcacaqGGaGaam4yamaa BaaaleaacaaIWaaabeaakiabg2da9iaaiAdacaaIYaGaaGimaiaac6 cacaaI0aGaaeiiamaalaaabaGaaeyBaaqaaiaabohaaaaaaa@57D8@

有効な温度範囲: [300 - 500 K]

表 2. 水の実験データ(単位: kg、m、秒)
  液相 蒸気相
Cp 4285.0 1401.0
Cv 3610.0 955.0
γ 1.19 1.47
P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbGaeyOhIukaaa@3B1D@ 7028.0e+5 0.0
b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaadkgaaaa@3766@ 6.61e-4 0.0
q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaadkgaaaa@3766@ -1177788.0 2077616.0

液相の参照状態: ρ 0 = 957.74   kg m 3 ,   P 0 = 104530  Pa,  c 0 = 1542   m s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaicdaaeqaaOGaeyypa0JaaGyoaiaaiwdacaaI3aGaaiOl aiaaiEdacaaI0aGaaeiiamaalaaabaGaae4AaiaabEgaaeaacaqGTb WaaWbaaSqabeaacaqGZaaaaaaakiaacYcacaqGGaGaamiuamaaBaaa leaacaaIWaaabeaakiabg2da9iaaigdacaaIWaGaaGinaiaaiwdaca aIZaGaaGimaiaabccacaqGqbGaaeyyaiaabYcacaqGGaGaam4yamaa BaaaleaacaaIWaaabeaakiabg2da9iaaigdacaaI1aGaaGinaiaaik dacaqGGaWaaSaaaeaacaqGTbaabaGaae4Caaaaaaa@5727@

妥当性: T(300~500Kの範囲内)

1 O Le Métayer, Richard Saurel, “The Noble-Abel Stiffened-Gas equation of state”, HAL Id: hal-01305974
2 J.R.Simoes-Moreira, ”Adiabatic evaporation waves”, Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, New-York (1994)
3 R. Oldenbourg, ”Properties of water and steam in SI-units”, Springer-Verlag Berlin Heidelberg, New-York (1989)