弾塑性材料

Johnson-Cook(/MAT/LAW2)

LAW2には、応力計算のための3つのパートがあります。


図 1.
  • 塑性ひずみの影響
  • ひずみ速度の影響
  • 温度変化の影響

材料パラメータ

LAW2で材料パラメータを入力する方法は2つあります。
  • Iflag=0: Johnson-Cookパラメータ a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DD@ b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DD@ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DD@ : アクティブ
  • Iflag=1:降伏応力、UTS(公称応力)、またはUTSでのひずみによる、新しい簡素化された入力
Iflag= 0
(1) σ=a+b ε p n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaey ypa0JaamyyaiabgUcaRiaadkgacqGHflY1cqaH1oqzdaWgaaWcbaGa amiCaaqabaGcdaahaaWcbeqaaiaad6gaaaaaaa@41AB@
ここで、
a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DD@
材料試験で読み取られ、真応力に変換される可能性のある降伏応力です。
b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DD@ および n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DD@
材料パラメータ材料の応力-ひずみ曲線のフィッティング(例: Altair Composeスクリプト)により、これら2つのパラメータが求められます。
Iflag = 1
この新しい入力では、ネッキングポイントでの降伏応力( σ y ), 引張り強さ(UTS)および工学ひずみ( ε UTS MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadwfacaWGubGaam4uaaqabaaaaa@3A55@ )が必要です。この新しい入力により、Radiossは自動的に a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DD@ b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DD@ および n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DD@ の等価値を計算します。


図 2. 引張試験

ひずみ速度

ひずみ速度は、引張または破壊における衝突パフォーマンスで、材料特性に大きな影響を与えます。Johnson-Cook理論では、降伏応力は直接ひずみ速度の影響を受け、次のように表されます:(2) σ=( a+b ε p n )( 1+cln ε ˙ ε ˙ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaey ypa0ZaaeWaaeaacaWGHbGaey4kaSIaamOyaiabgwSixlabew7aLnaa BaaaleaacaWGWbaabeaakmaaCaaaleqabaGaamOBaaaaaOGaayjkai aawMcaamaabmaabaGaaGymaiabgUcaRiaadogaciGGSbGaaiOBamaa laaabaGafqyTduMbaiaaaeaacuaH1oqzgaGaamaaBaaaleaacaaIWa aabeaaaaaakiaawIcacaGLPaaaaaa@4D90@
一般に、試験ひずみ速度が増加すると降伏応力は増加します。ひずみ速度係数 c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DF@ により、降伏応力の増加係数をスケーリングできます。 c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DF@ =0の場合、または ε ˙ 0 = 10 30 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcaaIXaGaaGimamaaCaaa leqabaGaaG4maiaaicdaaaaaaa@3CB6@ あるいは ε ˙ ε ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aacqGHKjYOcuaH1oqzgaGaamaaBaaaleaacaaIWaaabeaaaaa@3BF2@ の場合、ひずみ速度の影響もまた定義されません。


図 3.

温度変化

温度が上昇すると降伏応力は低下します。LAW2では、影響は ( 1 T * m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaeyOeI0IaamivamaaCaaaleqabaGaaiOkaiaad2gaaaaakiaa wIcacaGLPaaaaaa@3BD8@ により考慮されます。(3) σ=( a+b ε p n )( 1+cln ε ˙ ε ˙ 0 )( 1 T *m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaey ypa0ZaaeWaaeaacaWGHbGaey4kaSIaamOyaiabgwSixlabew7aLnaa BaaaleaacaWGWbaabeaakmaaCaaaleqabaGaamOBaaaaaOGaayjkai aawMcaamaabmaabaGaaGymaiabgUcaRiaadogaciGGSbGaaiOBamaa laaabaGafqyTduMbaiaaaeaacuaH1oqzgaGaamaaBaaaleaacaaIWa aabeaaaaaakiaawIcacaGLPaaadaqadaqaaiaaigdacqGHsislcaWG ubWaaWbaaSqabeaacaGGQaGaamyBaaaaaOGaayjkaiaawMcaaaaa@5371@ ここで、(4) T * = T T r T m e l t T r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaaiOkaaaakiabg2da9maalaaabaGaamivaiabgkHiTiaa dsfadaWgaaWcbaGaamOCaaqabaaakeaacaWGubWaaSbaaSqaaiaad2 gacaWGLbGaamiBaiaadshaaeqaaOGaeyOeI0IaamivamaaBaaaleaa caWGYbaabeaaaaaaaa@4455@
ここで、
T m e l t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGTbGaamyzaiaadYgacaWG0baabeaaaaa@3AC2@
溶融温度(単位はケルビン)。
T r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGYbaabeaaaaa@37F3@
室温(単位はケルビン)。
T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGubaaaa@3990@ は、以下で計算されます。(5) T = T i + E int ρ C p ( V o l u m e ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 da9iaadsfadaWgaaWcbaGaamyAaaqabaGccqGHRaWkdaWcaaqaaiaa dweadaWgaaWcbaGaciyAaiaac6gacaGG0baabeaaaOqaaiabeg8aYj aadoeadaWgaaWcbaGaamiCaaqabaGcdaqadaqaaiaadAfacaWGVbGa amiBaiaadwhacaWGTbGaamyzaaGaayjkaiaawMcaaaaaaaa@4970@
ここで、
E int MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaaciGGPbGaaiOBaiaacshaaeqaaaaa@39C6@
内部エネルギー。
内部エネルギーの変化は、Johnson-Cook則で降伏応力に影響を与えます。

硬化係数

金属は降伏するまで変形し、その後一般には硬化します(降伏応力は増加)。材料により硬化の様子は異なります(等方硬化、移動硬化など)。これは非常に重要な材料特性でもあります(スプリングバックの場合)。

LAW2では、オプションChard(硬化係数)を使用して、材料にどの硬化モデルを使用するかを記述します。この機能はLAW36、43、44、57、60、66、73、74でも使用できます。

Chardの値は1~0です。等方モデルの場合はChard=0、移動Prager-Zieglerモデルの場合はChard=1、これら2つのモデルの間の硬化の場合は1と0の間となります。
Chard = 0:等方性モデル
1次元のケースでは、材料は降伏応力後に強化されます。前回の引張りの最大応力がそれに続く荷重での降伏となり、この新しい降伏応力はそれに続く引張りおよび圧縮での降伏応力と同じになります。


図 4.
Chard = 1:運動学的Prager-Zieglerモデル
Bauschinger効果(引張りによる硬化の後、圧縮による軟化が発生し、圧縮での平均降伏が低下する)をモデル化するには、移動硬化を使用します。


図 5.

弾塑性区分線形材料(/MAT/LAW36)

LAW36では、さまざまなひずみ速度に対してさまざまな塑性応力-ひずみ曲線を直接定義できます。

大きなひずみ速度の塑性応力-ひずみ曲線は、必ず小さなひずみ速度の塑性応力-ひずみ曲線より上になります。


図 6.

ヤング率

ヤング率は、オプションfct_IDEEinf、およびCEを使用して、除荷時に更新(低減)できます。この機能の使用により、ハイテン鋼のスプリングバックの精度(除荷相時)が向上します。この機能は材料LAW43、LAW57、LAW60、LAW74およびLAW78でも使用できます。
  • fct_IDEを使用したヤング率の更新(fct_IDE ≠ 0):


    図 7.
  • EinfおよびCEを使用したヤング率の更新(fct_IDE = 0):


    図 8.

材料の挙動

fct_IDpは、特定の材料における引張と圧縮の挙動の区別(圧力依存降伏)に使用されます。したがって、有効降伏応力は公称降伏応力に実際の圧力に対応する降伏係数を乗じることによって得られます。


図 9.

HILL材料

Radiossでは、LAW32、LAW43、LAW72、LAW73、LAW74、LAW78、およびLAW93の各材料則でHILL基準を使用します。

HILL基準

一般的なHILL基準は次のとおりです:
  • 3D等価HILL応力:(6) f= F ( σ yy σ zz ) 2 +G ( σ zz σ xx ) 2 +H ( σ xx σ yy ) 2 +2L σ yz 2 +2M σ zx 2 +2N σ xy 2    = ( G+H ) σ xx 2 + ( F+H ) σ yy 2 + ( F+G ) σ zz 2 2H σ xx σ yy 2F σ yy σ zz 2G σ zz σ xx + 2L σ yz 2 + 2M σ zx 2 + 2N σ xy 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadA gacqGH9aqpdaGcaaqaaiaadAeadaqadiqaaiabeo8aZnaaBaaaleaa caWG5bGaamyEaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaamOEai aadQhaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaam4ramaabmGabaGaeq4Wdm3aaSbaaSqaaiaadQhacaWG6b aabeaakiabgkHiTiabeo8aZnaaBaaaleaacaWG4bGaamiEaaqabaaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGib WaaeWaceaacqaHdpWCdaWgaaWcbaGaamiEaiaadIhaaeqaaOGaeyOe I0Iaeq4Wdm3aaSbaaSqaaiaadMhacaWG5baabeaaaOGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaygW7caaIYaGaamit aiabeo8aZnaaDaaaleaacaWG5bGaamOEaaqaaiaaikdaaaGccqGHRa WkcaaIYaGaamytaiabeo8aZnaaDaaaleaacaWG6bGaamiEaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOtaiabeo8aZnaaDaaaleaacaWG4b GaamyEaaqaaiaaikdaaaaabeaaaOqaaiaabccacaqGGaGaaeiiaiaa b2dadaGcaaqaamaayaaabaWaaeWaaeaacaWGhbGaey4kaSIaamisaa GaayjkaiaawMcaaaWcbaaakiaawIJ=aiabeo8aZnaaDaaaleaacaWG 4bGaamiEaaqaaiaaikdaaaGccqGHRaWkdaagaaqaamaabmaabaGaam OraiabgUcaRiaadIeaaiaawIcacaGLPaaaaSqaaaGccaGL44pacqaH dpWCdaqhaaWcbaGaamyEaiaadMhaaeaacaaIYaaaaOGaey4kaSYaaG baaeaadaqadaqaaiaadAeacqGHRaWkcaWGhbaacaGLOaGaayzkaaaa leaaaOGaayjo+dGaeq4Wdm3aa0baaSqaaiaadQhacaWG6baabaGaaG OmaaaakiabgkHiTmaayaaabaGaaGOmaiaadIeaaSqaaaGccaGL44pa cqaHdpWCdaWgaaWcbaGaamiEaiaadIhaaeqaaOGaeq4Wdm3aaSbaaS qaaiaadMhacaWG5baabeaakiabgkHiTmaayaaabaGaaGOmaiaadAea aSqaaaGccaGL44pacqaHdpWCdaWgaaWcbaGaamyEaiaadMhaaeqaaO Gaeq4Wdm3aaSbaaSqaaiaadQhacaWG6baabeaakiabgkHiTmaayaaa baGaaGOmaiaadEeaaSqaaaGccaGL44pacqaHdpWCdaWgaaWcbaGaam OEaiaadQhaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadIhacaWG4baabeaa kiabgUcaRmaayaaabaGaaGzaVlaaikdacaWGmbaaleaaaOGaayjo+d Gaeq4Wdm3aa0baaSqaaiaadMhacaWG6baabaGaaGOmaaaakiabgUca RmaayaaabaGaaGOmaiaad2eaaSqaaaGccaGL44pacqaHdpWCdaqhaa WcbaGaamOEaiaadIhaaeaacaaIYaaaaOGaey4kaSYaaGbaaeaacaaI YaGaamOtaaWcbaaakiaawIJ=aiabeo8aZnaaDaaaleaacaWG4bGaam yEaaqaaiaaikdaaaaabeaaaaaa@DD25@
  • シェル要素:(7) f = F σ y y 2 + G σ x x 2 + H ( σ x x σ y y ) 2 + 2 N σ x y 2 = ( G + H ) σ x x 2 + ( F + H ) σ y y 2 2 H σ x x σ y y + 2 N σ x y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaey ypa0ZaaOaaaeaacaWGgbGaeq4Wdm3aa0baaSqaaiaadMhacaWG5baa baGaaGOmaaaakiabgUcaRiaadEeacqaHdpWCdaqhaaWcbaGaamiEai aadIhaaeaacaaIYaaaaOGaey4kaSIaamisamaabmGabaGaeq4Wdm3a aSbaaSqaaiaadIhacaWG4baabeaakiabgkHiTiabeo8aZnaaBaaale aacaWG5bGaamyEaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOtaiabeo8aZnaaDaaaleaacaWG4b GaamyEaaqaaiaaikdaaaaabeaakiabg2da9maakaaabaWaaGbaaeaa daqadaqaaiaadEeacqGHRaWkcaWGibaacaGLOaGaayzkaaaaleaaaO Gaayjo+dGaeq4Wdm3aa0baaSqaaiaadIhacaWG4baabaGaaGOmaaaa kiabgUcaRmaayaaabaWaaeWaaeaacaWGgbGaey4kaSIaamisaaGaay jkaiaawMcaaaWcbaaakiaawIJ=aiabeo8aZnaaDaaaleaacaWG5bGa amyEaaqaaiaaikdaaaGccqGHsisldaagaaqaaiaaikdacaWGibaale aaaOGaayjo+dGaeq4Wdm3aaSbaaSqaaiaadIhacaWG4baabeaakiab eo8aZnaaBaaaleaacaWG5bGaamyEaaqabaGccqGHRaWkdaagaaqaai aaikdacaWGobaaleaaaOGaayjo+dGaeq4Wdm3aa0baaSqaaiaadIha caWG5baabaGaaGOmaaaaaeqaaaaa@863E@

    ここで、 F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@36C1@ G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@36C1@ H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@36C1@ L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@36C1@ M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@36C1@ 、および N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@36C1@ は、6つのHILL異方性パラメータです。シェル要素で必要なHILLパラメータは、 F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@36C1@ G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@36C1@ H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@36C1@ 、および N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@36C1@ の4つのみです。

    LAW78ではHILL基準は次のとおりです:(8) φ ( A ) = 1 G + H A x x 2 2 r 0 1 + r 0 2 H A x x A y y + r 0 ( 1 + r 90 ) r 90 ( 1 + r 0 ) F + H A y y 2 + r 0 + r 90 r 90 ( 1 + r 0 ) ( 2 r 45 + 1 ) 2 N A x y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHgpGAca GGOaGaamyqaiaacMcacqGH9aqpdaagaaqaaiaaigdaaSqaaiaadEea cqGHRaWkcaWGibaakiaawIJ=aiabgwSixlaadgeadaqhaaWcbaGaam iEaiaadIhaaeaacaaIYaaaaOGaeyOeI0YaaGbaaeaadaWcaaqaaiaa ikdacaWGYbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaaGymaiabgUcaRi aadkhadaWgaaWcbaGaaGimaaqabaaaaaqaaiaaikdacaWGibaakiaa wIJ=aiaadgeadaWgaaWcbaGaamiEaiaadIhaaeqaaOGaamyqamaaBa aaleaacaWG5bGaamyEaaqabaGccqGHRaWkdaagaaqaamaalaaabaGa amOCamaaBaaaleaacaaIWaaabeaakmaabmaabaGaaGymaiabgUcaRi aadkhadaWgaaWcbaGaaGyoaiaaicdaaeqaaaGccaGLOaGaayzkaaaa baGaamOCamaaBaaaleaacaaI5aGaaGimaaqabaGcdaqadaqaaiaaig dacqGHRaWkcaWGYbWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzk aaaaaaWcbaGaamOraiabgUcaRiaadIeaaOGaayjo+dGaamyqamaaDa aaleaacaWG5bGaamyEaaqaaiaaikdaaaGccqGHRaWkdaagaaqaamaa laaabaGaamOCamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadkhada WgaaWcbaGaaGyoaiaaicdaaeqaaaGcbaGaamOCamaaBaaaleaacaaI 5aGaaGimaaqabaGcdaqadaqaaiaaigdacqGHRaWkcaWGYbWaaSbaaS qaaiaaicdaaeqaaaGccaGLOaGaayzkaaaaamaabmaabaGaaGOmaiaa dkhadaWgaaWcbaGaaGinaiaaiwdaaeqaaOGaey4kaSIaaGymaaGaay jkaiaawMcaaaWcbaGaaGOmaiaad6eaaOGaayjo+dGaamyqamaaDaaa leaacaWG4bGaamyEaaqaaiaaikdaaaaaaa@8B69@
    ランクフォードパラメータを使用してHILLを判断する方法が2種類あります。
    • ひずみ速度 r 00 , r 45 , r 90 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIWaGaaGimaaqabaGccaGGSaGaamOCamaaBaaaleaacaaI 0aGaaGynaaqabaGccaGGSaGaamOCamaaBaaaleaacaaI5aGaaGimaa qabaaaaa@3F42@ (LAW32、LAW43、LAW72、LAW73)
    • 降伏応力比 R 11 , R 22 , R 33 , R 12 , R 13 , R 23 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaaIXaGaaGymaaqabaGccaGGSaGaamOuamaaBaaaleaacaaI YaGaaGOmaaqabaGccaGGSaGaamOuamaaBaaaleaacaaIZaGaaG4maa qabaGccaGGSaGaamOuamaaBaaaleaacaaIXaGaaGOmaaqabaGccaGG SaGaamOuamaaBaaaleaacaaIXaGaaG4maaqabaGccaGGSaGaamOuam aaBaaaleaacaaIYaGaaG4maaqabaaaaa@487B@ (LAW74、LAW93)

ひずみ速度

ランクフォードパラメータ r α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadkhapaWaaSbaaSqaa8qacqaHXoqya8aabeaaaaa@396F@ は、面内の塑性ひずみと厚み方向の塑性ひずみ ε 33 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabew7aL9aadaWgaaWcbaWdbiaaiodacaaIZaaapaqabaaaaa@39FA@ との比率です。(9) r α = d ε α + π / 2 d ε 33 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadkhapaWaaSbaaSqaa8qacqaHXoqya8aabeaak8qacqGH9aqp daWcaaWdaeaapeGaamizaiabew7aL9aadaWgaaWcbaWdbiabeg7aHj abgUcaRiabec8aWjaac+cacaaIYaaapaqabaaakeaapeGaamizaiab ew7aL9aadaWgaaWcbaWdbiaaiodacaaIZaaapaqabaaaaaaa@47D3@

ここで、 α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaaleaaqaaaaaaaaa Wdbiabeg7aHbaa@381F@ は、直交異方性方向1に対して成す角度です。

r α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadkhapaWaaSbaaSqaa8qacqaHXoqya8aabeaaaaa@396F@ は、直交異方性方向1に対してさまざまな角度で切断した多くの試料で測定できます。荷重の方向を直交異方性の方向1とした引張試験で測定した r 00 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIWaGaaGimaaqabaaaaa@388E@ と同様。 r 90 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaI5aGaaGimaaqabaaaaa@3897@ 荷重の方向が直交異方性の方向1と直交する引張試験で測定した

ひずみ速度は、試料の厚み方向のひずみに対する試料の幅方向のひずみの比率です。


図 10.
この場合のHILLパラメータは次のようになります:(10) F = r 00 r 90 ( r 00 + 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGgbGaey ypa0ZaaSaaaeaacaWGYbWaaSbaaSqaaiaaicdacaaIWaaabeaaaOqa aiaadkhadaWgaaWcbaGaaGyoaiaaicdaaeqaaOGaaiikaiaadkhada WgaaWcbaGaaGimaiaaicdaaeqaaOGaey4kaSIaaGymaiaacMcaaaaa aa@4322@ (11) G = 1 ( r 00 + 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbGaey ypa0ZaaSaaaeaacaaIXaaabaGaaiikaiaadkhadaWgaaWcbaGaaGim aiaaicdaaeqaaOGaey4kaSIaaGymaiaacMcaaaaaaa@3E93@ (12) H = r 00 ( r 00 + 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibGaey ypa0ZaaSaaaeaacaWGYbWaaSbaaSqaaiaaicdacaaIWaaabeaaaOqa aiaacIcacaWGYbWaaSbaaSqaaiaaicdacaaIWaaabeaakiabgUcaRi aaigdacaGGPaaaaaaa@407A@ (13) N = ( 1 + 2 r 45 ) ( r 00 + r 90 ) 2 r 90 ( r 00 + 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobGaey ypa0ZaaSaaaeaacaGGOaGaaGymaiabgUcaRiaaikdacaWGYbWaaSba aSqaaiaaisdacaaI1aaabeaakiaacMcacaGGOaGaamOCamaaBaaale aacaaIWaGaaGimaaqabaGccqGHRaWkcaWGYbWaaSbaaSqaaiaaiMda caaIWaaabeaakiaacMcaaeaacaaIYaGaamOCamaaBaaaleaacaaI5a GaaGimaaqabaGccaGGOaGaamOCamaaBaaaleaacaaIWaGaaGimaaqa baGccqGHRaWkcaaIXaGaaiykaaaaaaa@4F27@

ここで、 G + H = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbGaey 4kaSIaamisaiabg2da9iaaigdaaaa@3A9B@

LAW32、LAW43、およびLAW73のHILL基準は次のとおりです:(14) σ e q = A 1 σ 1 2 + A 2 σ 2 2 A 3 σ 1 σ 2 + A 12 σ 12 2
R = r 00 + 2 r 45 + r 90 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbGaey ypa0ZaaSaaaeaacaWGYbWaaSbaaSqaaiaaicdacaaIWaaabeaakiab gUcaRiaaikdacaWGYbWaaSbaaSqaaiaaisdacaaI1aaabeaakiabgU caRiaadkhadaWgaaWcbaGaaGyoaiaaicdaaeqaaaGcbaGaaGinaaaa aaa@437F@ H = R 1 + R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibGaey ypa0ZaaSaaaeaacaWGsbaabaGaaGymaiabgUcaRiaadkfaaaaaaa@3B8D@
A 1 = H ( 1 + 1 r 00 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaS baaSqaaiaaigdaaeqaaOGaeyypa0JaamisamaabmaabaGaaGymaiab gUcaRmaalaaabaGaaGymaaqaaiaadkhadaWgaaWcbaGaaGimaiaaic daaeqaaaaaaOGaayjkaiaawMcaaaaa@407B@ A 2 = H ( 1 + 1 r 90 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaS baaSqaaiaaikdaaeqaaOGaeyypa0JaamisamaabmaabaGaaGymaiab gUcaRmaalaaabaGaaGymaaqaaiaadkhadaWgaaWcbaGaaGyoaiaaic daaeqaaaaaaOGaayjkaiaawMcaaaaa@4085@
A 3 = 2 H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaS baaSqaaiaaiodaaeqaaOGaeyypa0JaaGOmaiaadIeaaaa@3AA7@ A 12 = 2 H ( r 45 + 0.5 ) ( 1 r 00 + 1 r 90 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaS baaSqaaiaaigdacaaIYaaabeaakiabg2da9iaaikdacaWGibGaaiik aiaadkhadaWgaaWcbaGaaGinaiaaiwdaaeqaaOGaey4kaSIaaGimai aac6cacaaI1aGaaiykamaabmaabaWaaSaaaeaacaaIXaaabaGaamOC amaaBaaaleaacaaIWaGaaGimaaqabaaaaOGaey4kaSYaaSaaaeaaca aIXaaabaGaamOCamaaBaaaleaacaaI5aGaaGimaaqabaaaaaGccaGL OaGaayzkaaaaaa@4BBD@

これらのすべての基準でランクフォードパラメータ(ひずみ速度) r 00 , r 45 , r 90 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIWaGaaGimaaqabaGccaGGSaGaamOCamaaBaaaleaacaaI 0aGaaGynaaqabaGccaGGSaGaamOCamaaBaaaleaacaaI5aGaaGimaa qabaaaaa@3F42@ が要求され、HILLパラメータ A i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbaabeaaaaa@37D6@ Radiossによって自動的に計算されます。

降伏応力比

LAW93で使用する降伏応力比は次のとおりです:(15) R i j = σ i j σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaWcaaqaaiabeo8aZnaa BaaaleaacaWGPbGaamOAaaqabaaakeaacqaHdpWCdaWgaaWcbaGaaG imaaqabaaaaaaa@4076@
降伏応力比 R i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@38D7@ を取得するには、2つの荷重ケースの降伏応力を測定する必要があります。
  • 引張試験で得られた降伏応力 σ 11 , σ 22 , σ 33 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaigdacaaIXaaabeaakiaacYcacqaHdpWCdaWgaaWcbaGa aGOmaiaaikdaaeqaaOGaaiilaiabeo8aZnaaBaaaleaacaaIZaGaaG 4maaqabaaaaa@41A0@
  • せん断試験で得られた降伏せん断応力 σ 12 , σ 13 , σ 23 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaigdacaaIYaaabeaakiaacYcacqaHdpWCdaWgaaWcbaGa aGymaiaaiodaaeqaaOGaaiilaiabeo8aZnaaBaaaleaacaaIYaGaaG 4maaqabaaaaa@41A0@

LAW93でパラメータ入力を使用する場合は、初期応力パラメータ σ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMhaaeqaaaaa@38E4@ を参照降伏応力 σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaicdaaeqaaaaa@38A0@ として取得します。曲線入力を使用する場合は、曲線から読み取った降伏応力を参照降伏応力 σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaicdaaeqaaaaa@38A0@ として取得します。

シェルの4つのHILLパラメータはRadiossによって自動的に計算されます。(16) F = 1 2 ( 1 R 22 2 + 1 R 33 2 1 R 11 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiabg2 da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiikamaalaaabaGaaGym aaqaaiaadkfadaqhaaWcbaGaaGOmaiaaikdaaeaacaaIYaaaaaaaki abgUcaRmaalaaabaGaaGymaaqaaiaadkfadaqhaaWcbaGaaG4maiaa iodaaeaacaaIYaaaaaaakiabgkHiTmaalaaabaGaaGymaaqaaiaadk fadaqhaaWcbaGaaGymaiaaigdaaeaacaaIYaaaaaaakiaacMcaaaa@489E@ (17) G = 1 2 ( 1 R 33 2 + 1 R 11 2 1 R 22 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiabg2 da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiikamaalaaabaGaaGym aaqaaiaadkfadaqhaaWcbaGaaG4maiaaiodaaeaacaaIYaaaaaaaki abgUcaRmaalaaabaGaaGymaaqaaiaadkfadaqhaaWcbaGaaGymaiaa igdaaeaacaaIYaaaaaaakiabgkHiTmaalaaabaGaaGymaaqaaiaadk fadaqhaaWcbaGaaGOmaiaaikdaaeaacaaIYaaaaaaakiaacMcaaaa@489F@ (18) H = 1 2 ( 1 R 22 2 + 1 R 11 2 1 R 33 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabg2 da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiikamaalaaabaGaaGym aaqaaiaadkfadaqhaaWcbaGaaGOmaiaaikdaaeaacaaIYaaaaaaaki abgUcaRmaalaaabaGaaGymaaqaaiaadkfadaqhaaWcbaGaaGymaiaa igdaaeaacaaIYaaaaaaakiabgkHiTmaalaaabaGaaGymaaqaaiaadk fadaqhaaWcbaGaaG4maiaaiodaaeaacaaIYaaaaaaakiaacMcaaaa@48A0@ (19) N = 3 2 R 12 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabg2 da9maalaaabaGaaG4maaqaaiaaikdacaWGsbWaa0baaSqaaiaaigda caaIYaaabaGaaGOmaaaaaaaaaa@3C90@
LAW74では、降伏応力比 R i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@38D7@ が、降伏応力 σ 11 , σ 22 , σ 33 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaigdacaaIXaaabeaakiaacYcacqaHdpWCdaWgaaWcbaGa aGOmaiaaikdaaeqaaOGaaiilaiabeo8aZnaaBaaaleaacaaIZaGaaG 4maaqabaaaaa@41A0@ σ 12 , σ 13 , σ 23 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaigdacaaIYaaabeaakiaacYcacqaHdpWCdaWgaaWcbaGa aGymaiaaiodaaeqaaOGaaiilaiabeo8aZnaaBaaaleaacaaIYaGaaG 4maaqabaaaaa@41A0@ 入力で直接使用され、ソリッドの6つのHILLパラメータがRadiossによって自動的に計算されます。
F = 1 2 ( 1 σ 22 2 + 1 σ 33 2 1 σ 11 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGgbGaey ypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaamaalaaabaGa aGymaaqaaiabeo8aZnaaDaaaleaacaaIYaGaaGOmaaqaaiaaikdaaa aaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaeq4Wdm3aa0baaSqaaiaa iodacaaIZaaabaGaaGOmaaaaaaGccqGHsisldaWcaaqaaiaaigdaae aacqaHdpWCdaqhaaWcbaGaaGymaiaaigdaaeaacaaIYaaaaaaaaOGa ayjkaiaawMcaaaaa@4BF9@ G = 1 2 ( 1 σ 22 2 + 1 σ 33 2 1 σ 11 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbGaey ypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaamaalaaabaGa aGymaaqaaiabeo8aZnaaDaaaleaacaaIYaGaaGOmaaqaaiaaikdaaa aaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaeq4Wdm3aa0baaSqaaiaa iodacaaIZaaabaGaaGOmaaaaaaGccqGHsisldaWcaaqaaiaaigdaae aacqaHdpWCdaqhaaWcbaGaaGymaiaaigdaaeaacaaIYaaaaaaaaOGa ayjkaiaawMcaaaaa@4BFA@
H = 1 2 ( 1 σ 22 2 + 1 σ 33 2 1 σ 11 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibGaey ypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaamaalaaabaGa aGymaaqaaiabeo8aZnaaDaaaleaacaaIYaGaaGOmaaqaaiaaikdaaa aaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaeq4Wdm3aa0baaSqaaiaa iodacaaIZaaabaGaaGOmaaaaaaGccqGHsisldaWcaaqaaiaaigdaae aacqaHdpWCdaqhaaWcbaGaaGymaiaaigdaaeaacaaIYaaaaaaaaOGa ayjkaiaawMcaaaaa@4BFB@ L = 1 2 σ 23 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGmbGaey ypa0ZaaSaaaeaacaaIXaaabaGaaGOmaiabeo8aZnaaDaaaleaacaaI YaGaaG4maaqaaiaaikdaaaaaaaaa@3DE1@
M = 1 2 σ 31 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaey ypa0ZaaSaaaeaacaaIXaaabaGaaGOmaiabeo8aZnaaDaaaleaacaaI ZaGaaGymaaqaaiaaikdaaaaaaaaa@3DE1@ N = 1 2 σ 12 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobGaey ypa0ZaaSaaaeaacaaIXaaabaGaaGOmaiabeo8aZnaaDaaaleaacaaI XaGaaGOmaaqaaiaaikdaaaaaaaaa@3DE1@

シェル要素の場合は、 M = N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaey ypa0JaamOtaaaa@3909@ L = N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaey ypa0JaamOtaaaa@3909@ を取得します。