Ogden材料

超弾性材料は、ゴム、ポリマーおよび同様の材料の等方性、非線形弾性挙動をモデル化するために使用されます。これらの材料はその挙動においてほぼ非圧縮性で、非常に大きいひずみにストレッチされ得ます。

Radiossでは、材料則LAW42、LAW62、LAW69、LAW82およびLAW88は、超弾性材料のモデル化に、Ogden材料モデルの異なるひずみエネルギー密度関数を活用しています12

材料の定義

ストレッチ(ストレッチ比とも称される) λ は、最終長と初期長の比率で、変形の大きな材料に使用されます。引張における立方体の場合:
ε 1 = Δ l l 01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaqGuoGaamiBaaqa aiaadYgadaWgaaWcbaGaaGimaiaaigdaaeqaaaaaaaa@3E41@
方向1の工学ひずみ(公称ひずみとも称される)
λ 1 = l 1 l 01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaWGSbWaaSbaaSqa aiaaigdaaeqaaaGcbaGaamiBamaaBaaaleaacaaIWaGaaGymaaqaba aaaaaa@3E25@
方向1のストレッチ


図 1.
したがって、ひずみとストレッチは次のように関連付けされます:(1) λ = 1 + ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaey ypa0JaaGymaiabgUcaRiabew7aLbaa@3BF4@
主ストレッチ λ i は相対体積 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C5@ の計算により体積変形を表すために使用され、次のように計算されます: (2) J = V V 0 = l 1 l 2 l 3 l 01 l 02 l 03 = λ 1 λ 2 λ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiabg2 da9maalaaabaGaamOvaaqaaiaadAfadaWgaaWcbaGaaGimaaqabaaa aOGaeyypa0ZaaSaaaeaacaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaey yXICTaamiBamaaBaaaleaacaaIYaaabeaakiabgwSixlaadYgadaWg aaWcbaGaaG4maaqabaaakeaacaWGSbWaaSbaaSqaaiaaicdacaaIXa aabeaakiabgwSixlaadYgadaWgaaWcbaGaaGimaiaaikdaaeqaaOGa eyyXICTaamiBamaaBaaaleaacaaIWaGaaG4maaqabaaaaOGaeyypa0 Jaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaeq4UdW2aaSba aSqaaiaaikdaaeqaaOGaeyyXICTaeq4UdW2aaSbaaSqaaiaaiodaae qaaaaa@5FC1@
非圧縮性材料の場合、体積は変化しないため、 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C5@ =1であり、したがって、ストレッチは以下の材料試験について計算されます。
  • 単軸試験:

    λ 1 = λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBda WgaaWcbaGaaGymaaqabaGccqGH9aqpcqaH7oaBcaaMe8oaaa@3D4B@ および λ 2 2 = λ 3 2 = 1 λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBda WgaaWcbaGaaGOmaaqabaGcdaahaaWcbeqaaiaaikdaaaGccqGH9aqp cqaH7oaBdaWgaaWcbaGaaG4maaqabaGcdaahaaWcbeqaaiaaikdaaa GccqGH9aqpdaWcaaqaaiaaigdaaeaacqaH7oaBaaaaaa@421D@

  • 二軸試験:

    λ 1 = λ 2 = λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBda WgaaWcbaGaaGymaaqabaGccqGH9aqpcqaH7oaBdaWgaaWcbaGaaGOm aaqabaGccqGH9aqpcqaH7oaBcaaMe8oaaa@40F7@ および λ 3 = λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBda WgaaWcbaGaaG4maaqabaGccqGH9aqpcqaH7oaBdaahaaWcbeqaaiab gkHiTiaaikdaaaaaaa@3D96@

  • 平面(せん断)試験

    λ 1 = λ ; λ 3 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBda WgaaWcbaGaaGymaaqabaGccqGH9aqpcqaH7oaBcaaMe8Uaai4oaiaa ysW7cqaH7oaBdaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaaIXaaaaa@43FF@ および λ 2 = λ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBda WgaaWcbaGaaGOmaaqabaGccqGH9aqpcqaH7oaBdaahaaWcbeqaaiab gkHiTiaaigdaaaGccaaMb8oaaa@3F28@

/MAT/LAW42(OGDEN)

この材料モデルは、Ogden、Neo-Hookean、またはMooney-Rivlin材料モデルを使用して指定された超弾性、粘性、および非圧縮性の材料を定義します。この法則は、通常、非圧縮性のゴム、ポリマー、フォーム、およびエラストマーのモデル化に使用されます。この材料は、シェル要素とソリッド要素に使用できます。

LAW42は、以下のOgden材料モデルのひずみエネルギー密度表現を使用します。(3) W ( λ 1 , λ 2 , λ 3 ) = p = 1 5 μ p α p ( λ ¯ 1 α p + λ ¯ 2 α p + λ ¯ 3 α p 3 ) + K 2 ( J 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGxbWaae WaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaGGSaGaeq4UdW2a aSbaaSqaaiaaikdaaeqaaOGaaiilaiabeU7aSnaaBaaaleaacaaIZa aabeaaaOGaayjkaiaawMcaaiabg2da9maaqahabaWaaSaaaeaacqaH 8oqBdaWgaaWcbaGaamiCaaqabaaakeaacqaHXoqydaWgaaWcbaGaam iCaaqabaaaaOWaaeWaaeaadaqdaaqaaiabeU7aSbaadaWgaaWcbaGa aGymaaqabaGcdaahaaWcbeqaaiabeg7aHnaaBaaameaacaWGWbaabe aaaaGccqGHRaWkdaqdaaqaaiabeU7aSbaadaWgaaWcbaGaaGOmaaqa baGcdaahaaWcbeqaaiabeg7aHnaaBaaameaacaWGWbaabeaaaaGccq GHRaWkdaqdaaqaaiabeU7aSbaadaWgaaWcbaGaaG4maaqabaGcdaah aaWcbeqaaiabeg7aHnaaBaaameaacaWGWbaabeaaaaGccqGHsislca aIZaaacaGLOaGaayzkaaaaleaacaWGWbGaeyypa0JaaGymaaqaaiaa iwdaa0GaeyyeIuoakiabgUcaRmaalaaabaGaam4saaqaaiaaikdaaa WaaeWaaeaacaWGkbGaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaa leqabaGaaGOmaaaaaaa@6C02@
ここで、
W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGxbaaaa@373A@
ひずみエネルギー密度
λ i
ith主工学ストレッチ
J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbaaaa@372D@
相対体積は次のように定義されます: J = λ 1 λ 2 λ 3 = ρ 0 ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbGaey ypa0Jaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaeyyXICTaeq4UdW2a aSbaaSqaaiaaikdaaeqaaOGaeyyXICTaeq4UdW2aaSbaaSqaaiaaio daaeqaaOGaeyypa0ZaaSaaaeaacqaHbpGCdaWgaaWcbaGaaGimaaqa baaakeaacqaHbpGCaaaaaa@4A3F@
λ ¯ i = J 1 3 λ i
偏差ストレッチ
α p および μ p
材料定数係数ペア。
5つまでの材料定数ペアを定義できます。
初期せん断弾性率 μ および体積弾性率( K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbaaaa@372E@ )は、次のように与えられます:(4) μ = p = 1 5 μ p α p 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0ZaaSaaaeaadaaeWbqaaiabeY7aTnaaBaaaleaacaWGWbaabeaa kiabgwSixlabeg7aHnaaBaaaleaacaWGWbaabeaaaeaacaWGWbGaey ypa0JaaGymaaqaaiaaiwdaa0GaeyyeIuoaaOqaaiaaikdaaaaaaa@4720@
および(5) K = μ 2 ( 1 + ν ) 3 ( 1 2 ν )

ここで、 ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@37AF@ はポアソン比で、体積弾性率の計算のみに使用されます。

材料パラメータ

パラメータ α p および μ p は、初期せん断弾性率が以下となるように選択されなくてはなりません:(6) μ= p=1 5 μ p α p 2 >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0ZaaSaaaeaadaaeWbqaaiabeY7aTnaaBaaaleaacaWGWbaabeaa kiabgwSixlabeg7aHnaaBaaaleaacaWGWbaabeaaaeaacaWGWbGaey ypa0JaaGymaaqaaiaaiwdaa0GaeyyeIuoaaOqaaiaaikdaaaGaeyOp a4JaaGimaaaa@48E2@
材料の安定性のためには、各材料定数ペアが以下のとおりである必要があります: (7) μ p α p > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBda WgaaWcbaGaamiCaaqabaGccqGHflY1cqaHXoqydaWgaaWcbaGaamiC aaqabaGccqGH+aGpcaaIWaaaaa@4015@

通常、Ogdenモデルは700%までのひずみに使用することができます。材料ペア α p および μ p に必要な項の数は、適合する実験データの範囲と望まれる曲線フィッティングの精度に依存します。実践的には、3つの材料ペアがほとんどのデータに適合します。特定の材料について材料ペアが既知ではない場合、単軸試験データの曲線フィッティングがLAW69を用いてRadiossで、もしくは別のフィッティングソフトウェアを介して行うことが可能です。

Neo-Hookeanモデル

Ogden材料モデルのシンプルなケースが、ひずみエネルギー密度関数の次の式を使用して表現可能なNeo-Hookenモデルです:(8) W= C 10 ( I 1 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabg2 da9iaadoeadaWgaaWcbaGaaGymaiaaicdaaeqaaOWaaeWaaeaacaWG jbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaG4maaGaayjkaiaawM caaaaa@3F3E@
ここで、
I 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIXaaabeaaaaa@37AC@
右Cauchy-Greenテンソルの第1不変量
C 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIXaGaaGimaaqabaaaaa@3860@
材料の定数

この表現は、次の場合に、LAW42 Ogdenひずみエネルギー密度関数から求められます:

μ 1 =2 C 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaigdaaeqaaOGaeyypa0JaaGOmaiabgwSixlaadoeadaWg aaWcbaGaaGymaiaaicdaaeqaaaaa@3F13@ α 1 =2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaigdaaeqaaOGaeyypa0JaaGOmaaaa@3A49@ 、および μ 2 = α 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaikdaaeqaaOGaeyypa0JaeqySde2aaSbaaSqaaiaaikda aeqaaOGaeyypa0JaaGimaaaa@3DF6@

Neo-Hookeanモデルは、20%未満のひずみについてのみ正確であるシンプルなモデルです。

Mooney-Rivlinモデル

LAW42 Ogden材料モデルの少し複雑なケースが、ひずみエネルギー密度関数の次の式を使用して表現可能なMooney-Rivlinモデルです:(9) W= C 10 ( I 1 3 )+ C 01 ( I 2 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabg2 da9iaadoeadaWgaaWcbaGaaGymaiaaicdaaeqaaOWaaeWaaeaacaWG jbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaG4maaGaayjkaiaawM caaiabgUcaRiaadoeadaWgaaWcbaGaaGimaiaaigdaaeqaaOWaaeWa aeaacaWGjbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaaG4maaGaay jkaiaawMcaaaaa@4786@
ここで、
I 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIXaaabeaaaaa@37AC@ および I 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIXaaabeaaaaa@37AC@
右Cauchy-Greenテンソルの第1および第2不変量
C 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIXaGaaGimaaqabaaaaa@3860@ および C 01 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIXaGaaGimaaqabaaaaa@3860@
材料の定数

この表現は、次の場合に、LAW42 Ogdenひずみエネルギー密度関数から求められます:

μ 1 = 2 C 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaigdaaeqaaOGaeyypa0JaaGOmaiabgwSixlaadoeadaWg aaWcbaGaaGymaiaaicdaaeqaaaaa@3F13@ μ 2 = 2 C 01 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGOmaiabgwSixlaa doeadaWgaaWcbaGaaGimaiaaigdaaeqaaaaa@4001@ α 1 = 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaigdaaeqaaOGaeyypa0JaaGOmaaaa@3A49@ 、および α 2 = -2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaigdaaeqaaOGaeyypa0JaaGOmaaaa@3A49@

Mooney-Rivlin定数は、材料サプライヤーまたは試験会社から入手できます。入手できない場合、単軸試験データの曲線フィッティングがLAW69を用いてRadiossで、もしくは別のフィッティングソフトウェアを介して行うことが可能です。Mooney-Rivlin材料則は、100%までのひずみについて正確です。

ポアソン比と材料の非圧縮性

材料が真に非圧縮性である場合、 ν = 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maey ypa0JaaGimaiaac6cacaaI1aaaaa@3AE0@ 。しかしながら、これは無限体積弾性率、無限音速、ひいては無限に小さいソリッド要素時間ステップをもたらすため、実践的には使用するのは不可能です。 (10) K = μ 2 ( 1 + ν ) 3 ( 1 2 ν ) = μ 2 ( 1 + ν ) 3 ( 1 2 * 0.5 ) = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 da9iabeY7aTjabgwSixpaalaaabaGaaGOmamaabmaabaGaaGymaiab gUcaRiabe27aUbGaayjkaiaawMcaaaqaaiaaiodadaqadaqaaiaaig dacqGHsislcaaIYaGaeqyVd4gacaGLOaGaayzkaaaaaiabg2da9iab eY7aTjabgwSixpaalaaabaGaaGOmamaabmaabaGaaGymaiabgUcaRi abe27aUbGaayjkaiaawMcaaaqaaiaaiodadaqadaqaaiaaigdacqGH sislcaaIYaGaaiOkaiaaicdacaGGUaGaaGynaaGaayjkaiaawMcaaa aacqGH9aqpcqGHEisPaaa@5C83@

異なるポアソン比入力の影響は、図 2に見られます。結果のうち最も大きな差は、より多くの量のひずみです。 ν = 0.4997 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jh9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaIWaGaaiOlaiaaisdacaaI5aGaaGyoaiaaiEdaaaa@3E7A@ の際、結果は試験データとより良く合致しますが、時間ステップは ν = 0.495 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jh9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaIWaGaaiOlaiaaisdacaaI5aGaaGyoaiaaiEdaaaa@3E7A@ の1/4となります。したがって、計算時間と精度のバランスをとるために、非圧縮性ゴム材料には ν = 0.495 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jh9qqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaIWaGaaiOlaiaaisdacaaI5aGaaGyoaiaaiEdaaaa@3E7A@ を使用することが推奨されます。

ポアソン比と体積弾性率の影響は、他のOgden材料則と同様になります。


図 2.

陽解法シミュレーションの場合は、ポアソン比を高くすると、時間ステップ値の極端な減少や発散につながる可能性があります。

LAW42では、材料の非圧縮性は、密度の変化に比例して圧力を計算するペナルティアプローチを使用して求められます:(11) P = K F s c a l e b l k f b l k ( J ) ( J 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey ypa0Jaam4saiabgwSixlaadAeacaWGZbGaam4yaiaadggacaWGSbGa amyzamaaBaaaleaacaWGIbGaamiBaiaadUgaaeqaaOGaeyyXICTaci OzamaaBaaaleaacaWGIbGaamiBaiaadUgaaeqaaOWaaeWaaeaacaWG kbaacaGLOaGaayzkaaGaeyyXIC9aaeWaaeaacaWGkbGaeyOeI0IaaG ymaaGaayjkaiaawMcaaaaa@5293@
ここで、
K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbaaaa@372E@
体積弾性率
J = V V 0 = m ρ 0 m ρ = ρ 0 ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiabg2 da9maalaaabaGaamOvaaqaaiaadAfadaWgaaWcbaGaaGimaaqabaaa aOGaeyypa0ZaaSaaaeaacaWGTbGaeqyWdi3aaSbaaSqaaiaaicdaae qaaaGcbaGaamyBaiabeg8aYbaacqGH9aqpdaWcaaqaaiabeg8aYnaa BaaaleaacaaIWaaabeaaaOqaaiabeg8aYbaaaaa@4771@
質量が一定の場合に相対密度に簡易化される相対体積
f b l k ( J ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbWaaS baaSqaaiaadkgacaWGSbGaam4AaaqabaGcdaqadaqaaiaadQeaaiaa wIcacaGLPaaaaaa@3CA0@
体積係数スケールファクターvs相対体積関数
F s c a l e b l k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGgbGaam 4CaiaadogacaWGHbGaamiBaiaadwgadaWgaaWcbaGaamOyaiaadYga caWGRbaabeaaaaa@3EBE@
右記の関数の横軸のスケールファクター; f b l k ( J ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbWaaS baaSqaaiaadkgacaWGSbGaam4AaaqabaGcdaqadaqaaiaadQeaaiaa wIcacaGLPaaaaaa@3CA0@
超弾性材料の体積弾性率( K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbaaaa@372E@ )は一般的に非常に大きい値であり、非圧縮性条件( J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbaaaa@372D@ =1)を保持するために必要な圧力-抵抗を提供します。しかし、材料が圧縮し始めた場合( J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbaaaa@372D@ < 1)、体積係数値のスケーリングを J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbaaaa@372D@ の関数とすることが可能なfct_IDblk入力関数を含めることにより、体積弾性率を増加させることができます。デフォルトではスケーリングはなく、関数識別子が0であれば、体積スケーリング関数の値は1に等しくなります。密度のばらつきが小さくなるように、つまり、 J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbaaaa@372D@ の値が1に近付き材料が非圧縮性であるよう、LAW42コンポーネントの材料密度を出力(/ANIM/BRICK/DENS)し、確認することが推奨されます。


図 3. 体積弾性率スケールファクター関数fct_IDblk

粘性(速度)効果

LAW42ではMaxwellモデル(剛性 G i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaS baaSqaaiaadMgaaeqaaaaa@3844@ とダンパ η i を持つn個のスプリングの系として簡単に記述することができる)を使用した粘性(速度)効果がモデル化されます:

law82_maxwell_model
図 4. Maxwellモデル
Maxwellモデルは、Prony級数の入力( G i , τ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGPbaabeaakiaacYcacqaHepaDdaWgaaWcbaGaamyAaaqa baaaaa@3B76@ )を使って表現されます。超弾性初期せん断弾性率 μ は、Maxwellモデルの長期せん断弾性率 G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaS baaSqaaiabg6HiLcqabaaaaa@38C7@ と同じであり、 τ i は緩和時間です:(12) τ i = η i G i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHepaDda WgaaWcbaGaamyAaaqabaGccqGH9aqpdaWcaaqaaiabeE7aOnaaBaaa leaacaWGPbaabeaaaOqaaiaadEeadaWgaaWcbaGaamyAaaqabaaaaa aa@3F13@

G i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaS baaSqaaiaadMgaaeqaaaaa@3844@ および τ i の値は正の値である必要があります。

/MAT/LAW62 (VISC_HYP)

ポリマーとエラストマーのモデル化に使用可能なRadiossでの超粘弾性材料則です。

この材料則の超弾性挙動は、以下のひずみエネルギー密度関数を用いて定義されます:(13) W( λ 1 , λ 2 , λ 3 )= i=1 N 2 μ i α i 2 ( λ 1 α i + λ 2 α i + λ 3 α i 3+ 1 β ( J α i β 1) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaacI cacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaGGSaGaeq4UdW2aaSba aSqaaiaaikdaaeqaaOGaaiilaiabeU7aSnaaBaaaleaacaaIZaaabe aakiaacMcacqGH9aqpdaaeWbqaamaalaaabaGaaGOmaiabeY7aTnaa BaaaleaacaWGPbaabeaaaOqaaiabeg7aHnaaBaaaleaacaWGPbaabe aakmaaCaaaleqabaGaaGOmaaaaaaGcdaqadaqaaiabeU7aSnaaBaaa leaacaaIXaaabeaakmaaCaaaleqabaGaeqySde2aaSbaaWqaaiaadM gaaeqaaaaakiabgUcaRiabeU7aSnaaBaaaleaacaaIYaaabeaakmaa CaaaleqabaGaeqySde2aaSbaaWqaaiaadMgaaeqaaaaakiabgUcaRi abeU7aSnaaBaaaleaacaaIZaaabeaakmaaCaaaleqabaGaeqySde2a aSbaaWqaaiaadMgaaeqaaaaakiabgkHiTiaaiodacqGHRaWkdaWcaa qaaiaaigdaaeaacqaHYoGyaaGaaiikaiaadQeadaahaaWcbeqaaiab gkHiTiabeg7aHnaaBaaameaacaWGPbaabeaaliabek7aIbaakiabgk HiTiaaigdacaGGPaaacaGLOaGaayzkaaaaleaacaWGPbGaeyypa0Ja aGymaaqaaiaad6eaa0GaeyyeIuoaaaa@7228@
ここで、
W MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36F3@
ひずみエネルギー密度
λ i
i th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaaBa aaleaacaWG0bGaamiAaaqabaaaaa@38F6@ 主ストレッチ
J MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36F3@
以下で定義される相対体積 式 13
β= ν ( 12ν ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHYoGycq GH9aqpdaWcaaqaaiabe27aUbqaamaabmaabaGaaGymaiabgkHiTiaa ikdacqaH9oGBaiaawIcacaGLPaaaaaaaaa@4072@
α i および μ i
材料定数係数ペア。
5つまでの材料定数ペアを定義できます。
ポアソン比は 0 < ν < 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgY da8iabe27aUjabgYda8iaaicdacaGGUaGaaGynaaaa@3C9C@ でなければなりません。この材料則は、低いポアソン比の値を定義することによって、圧縮性、またはハイパーフォーム材料とも呼ばれる材料のモデル化に使用できます。
注: μ i 材料係数は異なりますが、以下を用いて変換することが可能です:(14) μ i LAW62 = μ i LAW42 α i LAW42 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBda qhaaWcbaGaamyAaaqaaiaadYeacaWGbbGaam4vaiaaiAdacaaIYaaa aOGaeyypa0ZaaSaaaeaacqaH8oqBdaqhaaWcbaGaamyAaaqaaiaadY eacaWGbbGaam4vaiaaisdacaaIYaaaaOGaeyyXICTaeqySde2aa0ba aSqaaiaadMgaaeaacaWGmbGaamyqaiaadEfacaaI0aGaaGOmaaaaaO qaaiaaikdaaaaaaa@4EBD@

粘性(速度)効果

LAW62ではMaxwellモデル(剛性 G i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGPbaabeaaaaa@37DC@ とダンパ η i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaS baaSqaaiaadMgaaeqaaaaa@38BD@ を持つn個のスプリングの系として簡単に記述することができる)を使用した粘性(速度)効果がモデル化されます:

law82_maxwell_model
図 5. Maxwellモデル
Maxwellモデルは、Prony級数の入力を使って表現されます。初期せん断係数は:(15) G 0 = i=1 N μ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaS baaSqaaiaaicdaaeqaaOGaeyypa0ZaaabCaeaacqaH8oqBdaWgaaWc baGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGobaani abggHiLdaaaa@41A9@
μ i の合計は0よりも大きい必要があります:(16) G 0 = G + i G i
剛性比は:(17) γ = G G 0 = 1 i γ i (18) γ i = G i G 0
ここで、 (19) γ i [ 0 , 1 ] , i γ i < 1
および、グラウンドせん断係数(20) G 0 = G + i G i
相対時間 τ i は正の値であることが必要です:(21) τ i = η i G i
注: 粘性が含まれる際、LAW62でのせん断係数は、粘性を含む初期せん断係数 G 0 = i = 1 N μ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaS baaSqaaiaaicdaaeqaaOGaeyypa0ZaaabCaeaacqaH8oqBdaWgaaWc baGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGobaani abggHiLdaaaa@41A9@ ですが、LAW42ではせん断弾性係数は長時間せん断係数であり、これは粘性 G = p = 1 5 μ p α p 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacqGHEisPaeqaaOGaeyypa0ZaaSaaaeaadaaeWbqaaiabeY7a TnaaBaaaleaacaWGWbaabeaakiabgwSixlabeg7aHnaaBaaaleaaca WGWbaabeaaaeaacaWGWbGaeyypa0JaaGymaaqaaiaaiwdaa0Gaeyye IuoaaOqaaiaaikdaaaaaaa@47DD@ を含みません。

/MAT/LAW69

この材料則(/MAT/LAW42 (OGDEN)の拡張)は、Ogden、Mooney-Rivlin材料モデルを使用して指定された超弾性および非圧縮性材料を定義します。材料パラメータが入力されているLAW42とは異なり、この材料則は単軸工学応力-ひずみ曲線からの試験データを用いて材料パラメータを計算します。

この材料は、シェル要素とソリッド要素に使用できます。

使用されるひずみエネルギー密度定式化は、law_IDに基づきます。
  • law_ID = 1 (Orgden則):(22) W ( λ 1 , λ 2 , λ 3 ) = p = 1 5 μ p α p ( λ ¯ 1 α p + λ ¯ 2 α p + λ ¯ 3 α p 3 ) + K 2 ( J 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGxbWaae WaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaGGSaGaeq4UdW2a aSbaaSqaaiaaikdaaeqaaOGaaiilaiabeU7aSnaaBaaaleaacaaIZa aabeaaaOGaayjkaiaawMcaaiabg2da9maaqahabaWaaSaaaeaacqaH 8oqBdaWgaaWcbaGaamiCaaqabaaakeaacqaHXoqydaWgaaWcbaGaam iCaaqabaaaaOWaaeWaaeaadaqdaaqaaiabeU7aSbaadaWgaaWcbaGa aGymaaqabaGcdaahaaWcbeqaaiabeg7aHnaaBaaameaacaWGWbaabe aaaaGccqGHRaWkdaqdaaqaaiabeU7aSbaadaWgaaWcbaGaaGOmaaqa baGcdaahaaWcbeqaaiabeg7aHnaaBaaameaacaWGWbaabeaaaaGccq GHRaWkdaqdaaqaaiabeU7aSbaadaWgaaWcbaGaaG4maaqabaGcdaah aaWcbeqaaiabeg7aHnaaBaaameaacaWGWbaabeaaaaGccqGHsislca aIZaaacaGLOaGaayzkaaaaleaacaWGWbGaeyypa0JaaGymaaqaaiaa iwdaa0GaeyyeIuoakiabgUcaRmaalaaabaGaam4saaqaaiaaikdaaa WaaeWaaeaacaWGkbGaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaa leqabaGaaGOmaaaaaaa@6C02@
  • law_ID = 2 (Mooney-Rivlin則):(23) W = C 10 ( I 1 3 ) + C 01 ( I 2 3 )

材料パラメータ

Radiossは、応力ひずみ曲線(fct_ID1)を読み出してから、非線形最小2乗フィッティングアルゴリズムを使用して、対応する材料パラメータペアを計算します。古典的なOgden則(law_ID=1)では、計算された材料パラメータペアは μ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadchaaeqaaaaa@38CE@ および α p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadchaaeqaaaaa@38B7@ で、pの値はN_pair入力を介して計算されます。最大値はN_pair=5で、デフォルト値は2です。良好なフィッティングにN_pair=3より大きい値は通常必要ありません。

Mooney-Rivlin則(law_ID =2)の場合、材料パラメータ C 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaS baaSqaaiaaigdacaaIWaaabeaaaaa@38C7@ および C 01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaS baaSqaaiaaigdacaaIWaaabeaaaaa@38C7@ は、 μ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadchaaeqaaaaa@38CE@ α p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadchaaeqaaaaa@38B7@ がLAW42 Ogden則についてこの変換を用いて計算され得ることを前提に計算されます:

μ 1 = 2 C 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaigdaaeqaaOGaeyypa0JaaGOmaiabgwSixlaadoeadaWg aaWcbaGaaGymaiaaicdaaeqaaaaa@3F13@ μ 2 = 2 C 01 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGOmaiabgwSixlaa doeadaWgaaWcbaGaaGimaiaaigdaaeqaaaaa@4001@ α 1 = 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaigdaaeqaaOGaeyypa0JaaGOmaaaa@3A49@ 、および α 2 = -2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaigdaaeqaaOGaeyypa0JaaGOmaaaa@3A49@

最小試験データ入力は、単軸工学応力-ひずみ曲線であるべきです。単軸圧縮データが利用可能である場合、工学ひずみは、負の値(圧縮)から正の値(引張)へと単調に増加するはずです。圧縮では、-100%のひずみは物理的にあり得ないため、工学ひずみは-1.0未満でなければなりません。

非線型最小2乗フィッティングの精度を向上させるために、以下を推奨します。
  • 実験データ曲線は、横軸点が一様に分布するスムーズな単調増加関数を表します。実験データ曲線内のデータ点の数は、パラメータペアN_pair)の数より多くする必要があります。
  • 工学ひずみは圧縮では負、引張では正となります。圧縮試験データの場合、工学ひずみは-1.0より大きくなるはずですが(100%圧縮最大)、応力ひずみデータのみが使用できます。
  • N_pair≥ 3の場合は、試験データのカバー率を引張ひずみで100%以上、圧縮ひずみで50%以上にする必要があります。
  • N_pairは、フィッティング手順での減衰を回避するために大きい値に設定しないようにする必要があります。

この材料則は、 μ p α p > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBda WgaaWcbaGaamiCaaqabaGccqaHXoqydaWgaaWcbaGaamiCaaqabaGc cqGH+aGpcaaIWaaaaa@3DCB@ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbaaaa@3753@ =1、…5)がすべての荷重条件に関しパラメータペアが満足している際は安定しています。デフォルトで、Radiossは、このような条件(Icheck=2)を考慮して曲線を当てはめようとします。当てはまる曲線が見つからなかった場合、Radiossは弱い方の条件(Icheck=1:)を使用し、これにより初期せん断超弾性係数( μ )が正であることが確実にされます。

計算された材料パラメータが入力試験データをどれほど良好に表しているかを見定めるために、Radioss Starterは、10%を超えないことが推奨される“フィッティングの平均誤差”を出力します。視覚的な比較のために、ひずみエネルギー密度から計算された応力-ひずみ曲線と、計算された材料パラメータもRadioss Starterによって出力されます。

単軸圧縮試験に含まれる摩擦のために、等しい2軸引張試験データを使用し、これを、非圧縮材料に有効であるこれらの式3を使って単軸圧縮データに変換したほうが、通常、より精確となります。(24) ε c = 1 ( ε b + 1 ) 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaam4yaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaadaqa daqaaiabew7aLnaaBaaaleaacaWGIbaabeaakiabgUcaRiaaigdaai aawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0IaaGym aaaa@4379@ (25) σ c = σ b ( 1 + ε b ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda WgaaWcbaGaam4yaaqabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaamOy aaqabaGcdaqadaqaaiaaigdacqGHRaWkcqaH1oqzdaWgaaWcbaGaam OyaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaa@43FA@
ここで、
ε c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaam4yaaqabaaaaa@391A@
単軸工学圧縮ひずみ
ε b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaam4yaaqabaaaaa@391A@
2軸工学等引張ひずみ
σ c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda WgaaWcbaGaam4yaaqabaaaaa@3936@
単軸工学圧縮応力
σ b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda WgaaWcbaGaam4yaaqabaaaaa@3936@
2軸工学等引張応力

材料の非圧縮性

材料則LAW69は、非圧縮性を保持するために、LAW42と同じ手法を使用します。追加の情報については、LAW42のポアソン比と材料の非圧縮性をご参照ください。

粘性(速度)効果

粘性効果を含めるには、LAW69と共に/VISC/PRONYを使用する必要があります。また、OgdenまたはMooney-Rivlinパラメータを抽出するためにLAW69を使用し、これらのパラメータを粘性を加えてLAW42で使用することが可能です。

/MAT/LAW82

この材料モデルは、Ogden、Neo-Hookean、またはMooney-Rivlin材料モデルを使用して指定された超弾性および非圧縮性の材料を定義します。この法則は、通常、非圧縮性のゴム、ポリマー、フォーム、およびエラストマーのモデル化に使用されます。

この材料は、シェル要素とソリッド要素に使用できます。LAW42またはLAW62と比較すると、この材料則は、式 26で与えられる異なるOgdenひずみエネルギー密度定式化を使用します。LAW82ひずみエネルギー密度定式化は、他のいくつかの有限要素ソルバーの超弾性モデルで使用されているものと合致します。したがって、このOgdenひずみエネルギー密度の形式の材料パラメータは、材料サプライヤーやその他のソースから入手できる場合があります。(26) W = i = 1 N 2 μ i α i 2 ( λ ¯ 1 α i + λ ¯ 2 α i + λ ¯ 3 α i 3 ) + i = 1 N 1 D i ( J 1 ) 2 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabg2 da9maaqahabaWaaSaaaeaacaaIYaGaeqiVd02aaSbaaSqaaiaadMga aeqaaaGcbaGaeqySde2aaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabe aacaaIYaaaaaaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaa0Ga eyyeIuoakmaabmaabaGafq4UdWMbaebadaWgaaWcbaGaaGymaaqaba GcdaahaaWcbeqaaiabeg7aHnaaBaaameaacaWGPbaabeaaaaGccqGH RaWkcuaH7oaBgaqeamaaBaaaleaacaaIYaaabeaakmaaCaaaleqaba GaeqySde2aaSbaaWqaaiaadMgaaeqaaaaakiabgUcaRiqbeU7aSzaa raWaaSbaaSqaaiaaiodaaeqaaOWaaWbaaSqabeaacqaHXoqydaWgaa adbaGaamyAaaqabaaaaOGaeyOeI0IaaG4maaGaayjkaiaawMcaaiab gUcaRmaaqahabaWaaSaaaeaacaaIXaaabaGaamiramaaBaaaleaaca WGPbaabeaaaaGcdaqadaqaaiaadQeacqGHsislcaaIXaaacaGLOaGa ayzkaaWaaWbaaSqabeaacaaIYaGaamyAaaaaaeaacaWGPbGaeyypa0 JaaGymaaqaaiaad6eaa0GaeyyeIuoaaaa@6A1C@
ここで、
W MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36D3@
ひずみエネルギー密度
N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36D3@
右記の数; 材料定数 α i μ i および D i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGPbaabeaaaaa@37DA@
λ ¯ i = J 1 3 λ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4UdWMbae badaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWGkbWaaWbaaSqabeaa cqGHsisldaWcaaqaaiaaigdaaeaacaaIZaaaaaaakiabeU7aSnaaBa aaleaacaWGPbaabeaaaaa@4036@
偏差ストレッチ
J MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36D3@
以下で定義される相対体積 式 2
初期せん断係数:(27) μ= i=1 N μ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0ZaaabCaeaacqaH8oqBdaWgaaWcbaGaamyAaaqabaaabaGaamyA aiabg2da9iaaigdaaeaacaWGobaaniabggHiLdaaaa@413C@
体積弾性率は、以下のルールに基づき、 K = 2 D 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 da9maalaaabaGaaGOmaaqaaiaadseadaWgaaWcbaGaaGymaaqabaaa aaaa@3A49@ のように計算されます:
  • ν = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maey ypa0JaaGimaaaa@396F@ の場合、 D 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaaabeaaaaa@37A7@ が入力される必要があります。
  • ν 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maey iyIKRaaGimaaaa@3A30@ の場合、 D 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaaabeaaaaa@37A7@ 入力は無視され、再計算されて、下記を用いてStarter出力に出力されます:(28) D 1 = 3 ( 1 2 v ) μ ( 1 + v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaaabeaakiabg2da9maalaaabaGaaG4maiaacIcacaaI XaGaeyOeI0IaaGOmaiaadAhacaGGPaaabaGaeqiVd0Maaiikaiaaig dacqGHRaWkcaWG2bGaaiykaaaaaaa@43E2@
  • ν = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maey ypa0JaaGimaaaa@396F@ D 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaaabeaaaaa@37A7@ =0の場合、 ν = 0.475 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maey ypa0JaaGimaiaac6cacaaI0aGaaG4naiaaiwdaaaa@3C5F@ のデフォルト値が使用され、 D 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaaabeaaaaa@37A7@ が以下を用いて計算されます 式 28

Neo-Hookeanモデル

LAW42と同様に、LAW82も以下を用いてNeo-Hookenモデルに簡易化することが可能です:

μ 1 =2 C 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaigdaaeqaaOGaeyypa0JaaGOmaiabgwSixlaadoeadaWg aaWcbaGaaGymaiaaicdaaeqaaaaa@3F13@ α 1 =2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaigdaaeqaaOGaeyypa0JaaGOmaaaa@3A49@ μ 2 = α 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaikdaaeqaaOGaeyypa0JaeqySde2aaSbaaSqaaiaaikda aeqaaOGaeyypa0JaaGimaaaa@3DF6@

Mooney-Rivlinモデル

LAW42と同様に、LAW82も以下を用いてMooney-Rivlinモデルに簡易化することが可能です:

μ 1 = 2 C 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaigdaaeqaaOGaeyypa0JaaGOmaiabgwSixlaadoeadaWg aaWcbaGaaGymaiaaicdaaeqaaaaa@3F13@ μ 2 = 2 C 01 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaigdaaeqaaOGaeyypa0JaaGOmaiabgwSixlaadoeadaWg aaWcbaGaaGymaiaaicdaaeqaaaaa@3F13@ α 1 = 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaigdaaeqaaOGaeyypa0JaaGOmaaaa@3A49@ および α 2 = -2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaigdaaeqaaOGaeyypa0JaaGOmaaaa@3A49@

粘性(速度)効果

粘性効果を含めるには、LAW82と共に/VISC/PRONYを使用する必要があります。

ドラッカーの条件の安定性チェック

LAW42とLAW69では、ドラッカーの安定性がRadioss Starterにより自動的に計算されます。

ドラッカー安定性条件は、対数ひずみ(真ひずみ)における微小な変化に対応するキルヒホッフ応力の変化が下記の不均衡を満足する際にチェックします。(29) i=1 3 d τ i d ε i >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaeWbqaai aadsgacqaHepaDdaWgaaWcbaGaamyAaaqabaGccaWGKbGaeqyTdu2a aSbaaSqaaiaadMgaaeqaaOGaeyOpa4JaaGimaaWcbaGaamyAaiabg2 da9iaaigdaaeaacaaIZaaaniabggHiLdaaaa@465E@

ここで、 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaaleaacaWGPbaaaa@3857@ =1、2、3 主方向

対数ひずみの変化(30) d ε i = d λ i λ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaeq yTdu2aaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaaaeaacaWGKbGa eq4UdW2aaSbaaSqaaiaadMgaaeqaaaGcbaGaeq4UdW2aaSbaaSqaai aadMgaaeqaaaaaaaa@42C1@
d τ i =Jd σ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaeq iXdq3aaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaamOsaiabgwSixlaa dsgacqaHdpWCdaWgaaWcbaGaamyAaaqabaaaaa@431F@
キルヒホッフ応力の変化
dτ=D:dε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaaC iXdiabg2da9iaahseacaGG6aGaamizaiaahw7aaaa@3E5C@
キルヒホッフ応力と対数ひずみとの間の関係
ドラッカーの安定性条件は:(31) d ε : D : d ε > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaeabqaai aadsgacaWH1oGaaiOoaiaahseacaGG6aGaamizaiaahw7acqGH+aGp caaIWaaaleqabeqdcqGHris5aaaa@41DB@
ここで、 D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHebaaaa@3835@ は接線材料剛性マトリックスで、応力-ひずみ曲線の勾配でもあります。(32) D=[ D 11 D 12 D 13 D 21 D 22 D 23 D 31 D 32 D 33 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHebGaey ypa0ZaamWaaeaafaqabeWadaaabaGaamiramaaBaaaleaacaaIXaGa aGymaaqabaaakeaacaWGebWaaSbaaSqaaiaaigdacaaIYaaabeaaaO qaaiaadseadaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaamiramaa BaaaleaacaaIYaGaaGymaaqabaaakeaacaWGebWaaSbaaSqaaiaaik dacaaIYaaabeaaaOqaaiaadseadaWgaaWcbaGaaGOmaiaaiodaaeqa aaGcbaGaamiramaaBaaaleaacaaIZaGaaGymaaqabaaakeaacaWGeb WaaSbaaSqaaiaaiodacaaIYaaabeaaaOqaaiaadseadaWgaaWcbaGa aG4maiaaiodaaeqaaaaaaOGaay5waiaaw2faaaaa@5173@
安定した材料の場合、接線材料剛性 D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHebaaaa@3835@ が正(応力-ひずみ曲線の傾きが正)になるよう要求します。接線材料マトリックス D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHebaaaa@3835@ は、下記の条件が満たされる場合に正です:(33) I 1 = t r ( D ) = D 11 + D 22 + D 33 > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaS baaSqaaiaaigdaaeqaaOGaeyypa0JaamiDaiaadkhadaqadaqaaiaa hseaaiaawIcacaGLPaaacqGH9aqpcaWGebWaaSbaaSqaaiaaigdaca aIXaaabeaakiabgUcaRiaadseadaWgaaWcbaGaaGOmaiaaikdaaeqa aOGaey4kaSIaamiramaaBaaaleaacaaIZaGaaG4maaqabaGccqGH+a GpcaaIWaaaaa@4A64@ (34) I 2 = D 11 D 22 + D 22 D 33 + D 33 D 11 D 23 2 D 13 2 D 12 2 >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaS baaSqaaiaaikdaaeqaaOGaeyypa0JaamiramaaBaaaleaacaaIXaGa aGymaaqabaGccaWGebWaaSbaaSqaaiaaikdacaaIYaaabeaakiabgU caRiaadseadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaamiramaaBaaa leaacaaIZaGaaG4maaqabaGccqGHRaWkcaWGebWaaSbaaSqaaiaaio dacaaIZaaabeaakiaadseadaWgaaWcbaGaaGymaiaaigdaaeqaaOGa eyOeI0IaamiramaaBaaaleaacaaIYaGaaG4maaqabaGcdaahaaWcbe qaaiaaikdaaaGccqGHsislcaWGebWaaSbaaSqaaiaaigdacaaIZaaa beaakmaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadseadaWgaaWcba GaaGymaiaaikdaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaeyOpa4Ja aGimaaaa@5983@ (35) I 3 =det( D )>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaS baaSqaaiaaiodaaeqaaOGaeyypa0JaciizaiaacwgacaGG0bWaaeWa aeaacaWHebaacaGLOaGaayzkaaGaeyOpa4JaaGimaaaa@4112@
Ogdenモデルのキルヒホッフ応力が:(36) τ i = p μ p [ λ ¯ i α p 1 3 ( λ ¯ 1 α p + λ ¯ 2 α p + λ ¯ 3 α p ) ]+K( J 2 J ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHepaDda WgaaWcbaGaamyAaaqabaGccqGH9aqpdaaeqbqaaiabeY7aTnaaBaaa leaacaWGWbaabeaakmaadmaabaGafq4UdWMbaebadaWgaaWcbaGaam yAaaqabaGcdaahaaWcbeqaaiabeg7aHnaaBaaameaacaWGWbaabeaa aaGccqGHsisldaWcaaqaaiaaigdaaeaacaaIZaaaamaabmaabaGafq 4UdWMbaebadaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaiabeg7a HnaaBaaameaacaWGWbaabeaaaaGccqGHRaWkcuaH7oaBgaqeamaaBa aaleaacaaIYaaabeaakmaaCaaaleqabaGaeqySde2aaSbaaWqaaiaa dchaaeqaaaaakiabgUcaRiqbeU7aSzaaraWaaSbaaSqaaiaaiodaae qaaOWaaWbaaSqabeaacqaHXoqydaWgaaadbaGaamiCaaqabaaaaaGc caGLOaGaayzkaaaacaGLBbGaayzxaaGaey4kaSIaam4samaabmaaba GaamOsamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadQeaaiaawIca caGLPaaaaSqaaiaadchaaeqaniabggHiLdaaaa@66C7@
D i j = τ i λ j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaadMgacaWGQbaabeaakiabg2da9maalaaabaGaeyOaIyRa eqiXdq3aaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaeq4UdW2aaS baaSqaaiaadQgaaeqaaaaaaaa@43DE@ であるため、与えられたOgdenパラメータ α p , μ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda WgaaWcbaGaamiCaaqabaGccaGGSaGaeqiVd02aaSbaaSqaaiaadcha aeqaaaaa@3DB9@ (条件 I 1 > 0 , I 2 > 0  and  I 3 > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaS baaSqaaiaaigdaaeqaaOGaeyOpa4JaaGimaiaacYcacaWGjbWaaSba aSqaaiaaikdaaeqaaOGaeyOpa4JaaGimaiaabccacaqGHbGaaeOBai aabsgacaqGGaGaamysamaaBaaaleaacaaIZaaabeaakiabg6da+iaa icdaaaa@46A0@ )について、ドラッカー安定性における材料のひずみ範囲が計算されます。


図 6.

ドラッカーの安全性の基準は、材料パラメータのセットが与えられている際、材料モデルが安定に留まるひずみ速度を計算します。この安定性チェックは各変形について生成することはできませんが、その代わり、一般的には単軸、2軸および平面ひずみ載荷の下で材料の安定性を確認するために使用されます。

たとえば、以下のOgdenパラメータの使用:

μ 1 =13.99077258830 α 1 =3.788192935039 μ 2 =9.13454532223 α 2 =7.17617341059 μ 3 =8.904655103235 α 3 =7.27028137148 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqabeWaca aabaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGaeyypa0deaaaaaaaa a8qacaaIXaGaaG4maiaac6cacaaI5aGaaGyoaiaaicdacaaI3aGaaG 4naiaaikdacaaI1aGaaGioaiaaiIdacaaIZaGaaGimaaWdaeaacqaH XoqydaWgaaWcbaGaaGymaaqabaGccqGH9aqppeGaaG4maiaac6caca aI3aGaaGioaiaaiIdacaaIXaGaaGyoaiaaikdacaaI5aGaaG4maiaa iwdacaaIWaGaaG4maiaaiMdaa8aabaGaeqiVd02aaSbaaSqaaiaaik daaeqaaOGaeyypa0ZdbiabgkHiTiaaiMdacaGGUaGaaGymaiaaioda caaI0aGaaGynaiaaisdacaaI1aGaaG4maiaaikdacaaIYaGaaGOmai aaiodaa8aabaGaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaeyypa0Ja eyOeI0YdbiaaiEdacaGGUaGaaGymaiaaiEdacaaI2aGaaGymaiaaiE dacaaIZaGaaGinaiaaigdacaaIWaGaaGynaiaaiMdaa8aabaGaeqiV d02aaSbaaSqaaiaaiodaaeqaaOGaeyypa0ZdbiaaiIdacaGGUaGaaG yoaiaaicdacaaI0aGaaGOnaiaaiwdacaaI1aGaaGymaiaaicdacaaI ZaGaaGOmaiaaiodacaaI1aaapaqaaiabeg7aHnaaBaaaleaacaaIZa aabeaakiabg2da98qacqGHsislcaaI3aGaaiOlaiaaikdacaaI3aGa aGimaiaaikdacaaI4aGaaGymaiaaiodacaaI3aGaaGymaiaaisdaca aI4aaaaaaa@8CBA@

次に、ドラッカー安定性がRadioss Starterで自動的にチェックされ、結果がStarter出力ファイル*0.outに出力されます。これは、与えられたOgdenパラメータでどの不安定度でひずみが起こり得るかを示します:
CHECK THE DRUCKER PRAGER STABILITY CONDITIONS   
      -----------------------------------------------
     MATERIAL LAW = OGDEN (LAW42) 
     MATERIAL NUMBER =         1
       TEST TYPE = UNIXIAL  
        COMPRESSION:    UNSTABLE AT A NOMINAL STRAIN LESS THAN -0.3880000000000    
        TENSION:        UNSTABLE AT A NOMINAL STRAIN LARGER THAN  0.9709999999999    
       TEST TYPE = BIAXIAL  
        COMPRESSION:    UNSTABLE AT A NOMINAL STRAIN LESS THAN -0.2880000000000    
        TENSION:        UNSTABLE AT A NOMINAL STRAIN LARGER THAN  0.2780000000000    
       TEST TYPE = PLANAR (SHEAR)
        COMPRESSION:    UNSTABLE AT A NOMINAL STRAIN LESS THAN -0.3680000000000    
        TENSION:        UNSTABLE AT A NOMINAL STRAIN LARGER THAN  0.5829999999999
注: Neo-Hookean材料( C 10 > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIXaGaaGimaaqabaGccqGH+aGpcaaIWaaaaa@3A2C@ (または μ 1 > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaigdaaeqaaOGaeyOpa4JaaGimaaaa@3A60@ ))の場合、材料は常に安定であるため、ドラッカー安定性チェックでは限界値は見つかりません。

Mooney-Rivlin材料の場合、 C 01  or  μ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aacaWGdbWaaSbaaSqaaiaaicdacaaIXaaabeaakiaabccacaqGVbGa aeOCaiaabccacqaH8oqBdaWgaaWcbaGaaGOmaaqabaaaaa@4110@ は負になり得て、これが不安定性を導くため、ドラッカー安定性はチェックされる必要があります。

/MAT/LAW88

この材料則は、異なるひずみ速度における表形式の単軸引張および圧縮工学応力およびひずみ試験データを用いて非圧縮性材料をモデル化します。ソリッド要素とのみ適合性があります。

この材料は、以下のOgdenひずみエネルギー密度関数に基づきますが、他の多くの超弾性材料モデルとは異なり、材料定数の抽出に曲線フィッティングを必要としません。 4(37) W = i = 1 3 j = 1 m μ j α j ( λ ¯ i α j 1 ) d e v i a t o r i c p a r t + K ( J 1 ln J ) s p h e r i c a l p a r t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGxbGaey ypa0ZaaGbaaeaadaaeWbqaamaaqahabaWaaSaaaeaacqaH8oqBdaWg aaWcbaGaamOAaaqabaaakeaacqaHXoqydaWgaaWcbaGaamOAaaqaba aaaaqaaiaadQgacqGH9aqpcaaIXaaabaGaamyBaaqdcqGHris5aaWc baGaamyAaiabg2da9iaaigdaaeaacaaIZaaaniabggHiLdGcdaqada qaaiqbeU7aSzaaraWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaa cqaHXoqydaWgaaadbaGaamOAaaqabaaaaOGaeyOeI0IaaGymaaGaay jkaiaawMcaaaWcbaGaaWizaiaamwgacaaJ2bGaaWyAaiaamggacaaJ 0bGaaW4BaiaamkhacaaJPbGaaW4yaiaamccacaaJWbGaaWyyaiaamk hacaaJ0baakiaawIJ=aiabgUcaRmaayaaabaGaam4samaabmaabaGa amOsaiabgkHiTiaaigdacqGHsislciGGSbGaaiOBaiaadQeaaiaawI cacaGLPaaaaSqaaiaamohacaaJWbGaaWiAaiaamwgacaaJYbGaaWyA aiaamogacaaJHbGaaWiBaiaamccacaaJWbGaaWyyaiaamkhacaaJ0b aakiaawIJ=aaaa@7B85@

代わって、この材料則は、表形式の単軸応力ひずみ曲線データから直接Ogden関数を決定します。

他のOgden材料則とは異なり、体積弾性率は試験データから入力、もしくはLAW69 Ogden曲線フィッティングのStarter出力から抽出される必要があります。LAW42またはLAW69とLAW88との結果を比較する際、同じ体積弾性率を使用しなければなりません。

除荷の挙動

除荷は、除荷関数を使って、もしくはエネルギーに基づきヒステリシスおよび形状係数入力を損傷モデルに与えることによって表すことができます。

損傷モデルを使用する場合、載荷と除荷の両方に載荷曲線が使用され、除荷応力テンソルは次の式に従って減少します:(38) σ = ( 1 D ) σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHdpGaey ypa0ZaaeWaaeaacaaIXaGaeyOeI0IaamiraaGaayjkaiaawMcaaiaa ho8aaaa@3DFC@
ここで、(39) D = ( 1 H y s ) ( 1 ( W c u r W max ) S h a p e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebGaey ypa0ZaaeWaaeaacaaIXaGaeyOeI0IaamisaiaadMhacaWGZbaacaGL OaGaayzkaaWaaeWaaeaacaaIXaGaeyOeI0YaaeWaaeaadaWcaaqaai aadEfadaWgaaWcbaGaam4yaiaadwhacaWGYbaabeaaaOqaaiaadEfa daWgaaWcbaGaciyBaiaacggacaGG4baabeaaaaaakiaawIcacaGLPa aadaahaaWcbeqaaiaadofacaWGObGaamyyaiaadchacaWGLbaaaaGc caGLOaGaayzkaaaaaa@4F7D@
ここで、
W c u r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGxbWaaS baaSqaaiaadogacaWG1bGaamOCaaqabaaaaa@3A3F@
現在のエネルギー
W max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGxbWaaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3A3A@
準-静的挙動に従った最大エネルギー
H y s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibGaam yEaiaadohaaaa@3921@ および S h a p e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaaleaacaWGtbGaam iAaiaadggacaWGWbGaamyzaaaa@3AE9@
ユーザーによる入力
除荷曲線が与えられる場合、これらのオプションが使用できます:
引張
載荷と除荷
= 0


図 7.
載荷は右記を使用; 載荷関数fct_IDLiおよび ε ˙ L i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacuaH1oqzga GaamaaBaaaleaacaWGmbGaamyAaaqabaaaaa@39FA@
除荷は、除荷関数fct_IDを使用unL
= 1


図 8.
載荷と除荷はすべて右記を使用; 載荷関数fct_IDLiおよび ε ˙ L i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacuaH1oqzga GaamaaBaaaleaacaWGmbGaamyAaaqabaaaaa@39FA@
= -1


図 9.
載荷は右記を使用; 載荷関数fct_IDLiおよび ε ˙ L i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacuaH1oqzga GaamaaBaaaleaacaWGmbGaamyAaaqabaaaaa@39FA@
  • 引張

    除荷は、除荷関数fct_IDを使用unL

  • 圧縮

    除荷は右記を使用; 載荷関数fct_IDLiおよび ε ˙ L i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacuaH1oqzga GaamaaBaaaleaacaWGmbGaamyAaaqabaaaaa@39FA@

粘性(速度)効果

ひずみ速度効果は、異なるひずみ速度における工学応力ひずみ試験データを含めることによってモデル化することができます。これは、従来のヒステリシス材料モデルについて粘性パラメータを計算するよりも簡単な場合があります。

まとめ

利用可能な試験データに最もフィットする材料則を使用してください。

たとえば、最小限の試験データが入手でき、ひずみが大き過ぎない場合、LAW42 Neo-Hookeanモデルが使用できます。荷重状態が既知である場合、応力状態を表す試験データを擁することが重要で、材料モデルはその試験データにフィットさせてください。

参考文献

1 Ogden, R. W., and Non-linear Elastic Deformations."Ellis Horwood."New York (1984)
2 Miller, Kurt."Testing Elastomers for Hyperelastic Material Models in Finite Element Analysis" Axel Products, Inc., Ann Arbor, MI (2017).Last modified April 5, 2017

http://www.axelproducts.com/downloads/TestingForHyperelastic.pdf

3 Axel Products, Inc. "Compression or Biaxial Extension", Ann Arbor, MI (2017).Last modified November 12, 2008

http://www.axelproducts.com/downloads/CompressionOrBiax.pdf

4 Kolling, S., P. A. Du Bois, D. J. Benson, and W. W. Feng."A tabulated formulation of hyperelasticity with rate effects and damage." Computational Mechanics 40, no. 5 (2007): 885-899