PELASFX

Bulk Data Entry Used to define the stiffness and stress coefficient of a scalar elastic element (spring) by means of the CELAS1 or CELAS3 entry.

This property is not affected by translational and rotational stiffness limits specified using PARAM,ELASSTIF.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
PELASFX PID K GE S PID K GE S  

Example

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
PELASFX 7 4.29   7.92 27 2.17      

Definitions

Field Contents SI Unit Example
PID Unique scalar elastic property identification number.

No default (Integer > 0)

 
K Elastic property value.

No default (Real)

 
GE Damping coefficient. To obtain the damping coefficient GE, multiply the critical damping ratio, C/C0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaac+cacaWGdbWaaSbaaSqaaiaaicdaaeqaaaaa@391F@ , by 2.

GE is ignored in transient analysis, if PARAM, W4 is not specified.

Default = 0.0 (Real)

 
S Stress coefficient.

Default = 0.0 (Real)

 

Comments

  1. Be careful using negative spring values.
  2. One or two elastic spring properties may be defined on a single entry.
  3. The element force of a spring is calculated from the equation:(1)
    f=k*(u1u2) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iaadUgacaGGQaWaaeWaaeaacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyDamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaa@3FD2@
    Where,
    k MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@36CE@
    Stiffness coefficient for the scalar element.
    u1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakeaaciGG1bGaaGymaaaa@3A8D@
    Displacement of the first degree-of-freedom listed on the CELAS1 and CELAS3 entries.
    Element stresses are calculated from the equation: (2)
    s=S*f MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiabg2da9iaadofacaGGQaGaamOzaaaa@3A65@
    Where, S MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@36CE@ is the stress coefficient as defined above.
  4. This card is represented as a property in HyperMesh.