RD-E:4300 多項式EOSを用いた理想気体のモデル化

この例題の目的は、数値的圧力、内部エネルギー、理想気体材料則の音速をプロットすることにあります。

理論界との比較がなされます。AbsoluteとRelative定式化のコントロールカードが使用されます。

ex43_perfect_gas_model
図 1.
多項式EOSはRadioss流体力学的圧力を計算や理想気体のモデル化に用いられます。これは圧縮で3次、膨張で線形です。(1) P= C 0 + C 1 μ+ C 2 μ 2 + C 3 μ 3 +( C 4 + C 5 μ )E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey ypa0Jaam4qamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadoeadaWg aaWcbaGaaGymaaqabaGccqaH8oqBcqGHRaWkcaWGdbWaaSbaaSqaai aaikdaaeqaaOGaeqiVd02aaWbaaSqabeaacaaIYaaaaOGaey4kaSIa am4qamaaBaaaleaacaaIZaaabeaakiabeY7aTnaaCaaaleqabaGaaG 4maaaakiabgUcaRmaabmaabaGaam4qamaaBaaaleaacaaI0aaabeaa kiabgUcaRiaadoeadaWgaaWcbaGaaGynaaqabaGccqaH8oqBaiaawI cacaGLPaaacaWGfbaaaa@531D@
ここで、(2) E = E int V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbGaeyypa0ZaaSaaaeaacaWGfbWaaSbaaSqaaiGacMgacaGG UbGaaiiDaaqabaaakeaacaWGwbWaaSbaaSqaaiaaicdaaeqaaaaaaa a@4051@
および (3) μ = ρ ρ 0 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaH8oqBcqGH9aqpdaWcaaqaaiabeg8aYbqaaiabeg8aYnaaBaaa leaacaaIWaaabeaaaaGccqGHsislcaaIXaaaaa@41BB@

これらの定式化の出力を理論解と比較するため圧縮 / 膨張の単純なテストが行われます。

使用されるオプションとキーワード

入力ファイル

必要なモデルファイルのダウンロードについては、モデルファイルへのアクセスを参照してください。

モデル概要

このテストは球状の膨張と圧縮を受ける理想気体の要素体積からなります。

ex43_cube
図 2.
初期条件を以下に記します:
  • P 0 = 1 e 5 [ Pa ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaaicdaaeqaaOGaeyypa0JaaGymaiaadwgacaaI1aWaamWa aeaaciGGqbGaaiyyaaGaay5waiaaw2faaaaa@4043@
  • V 0 = 1000 [ m 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaS baaSqaaiaaicdaaeqaaOGaeyypa0JaaGymaiaaicdacaaIWaGaaGim amaadmaabaGaaiyBamaaCaaaleqabaGaai4maaaaaOGaay5waiaaw2 faaaaa@40F2@
  • ρ 0 = 1.204 [ k g m 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda WgaaWcbaGaaGimaaqabaGccqGH9aqpcaaIXaGaaiOlaiaaikdacaaI WaGaaGinamaadmaabaWaaSaaaeaacaGGRbGaai4zaaqaaiaac2gada ahaaWcbeqaaiaacodaaaaaaaGccaGLBbGaayzxaaaaaa@4479@
  • μ 0 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBda WgaaWcbaGaaGimaaqabaGccqGH9aqpcaaIWaaaaa@3BCD@

流体は理想気体と仮定します。体積は純圧縮 1 < μ < 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHsislca aIXaGaeyipaWJaeqiVd0MaeyipaWJaaGimaaaa@3D87@ とそれに続く膨張 μ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcq GH+aGpcaaIWaaaaa@3ADF@ 図 3)を考慮するために3方向に変化させます。

このテストは1つのALE要素(8節点ソリッド)と多項式EOSでモデル化されます。

圧力、内部エネルギーと音速の変化が数値計算出力と理論解の間で比較されます。

長さは/IMPDISPで修正され、その V 図 3への影響がプロットされます(図 3)。

ex43_elementary_volume_change
図 3. 要素体積変化

シミュレーションの反復

1つのALEソリッド要素が用いられます。材料は、ソリッドの節点がLagrangeであると定義することにより要素内に閉じ込められます。それぞれの面に対して、4節点に強制変位が法線方向に与えられます。

多項式 EOS

多項式EOSが/EOS/POLYNOMIALの中で流体力学的圧力の計算に用いられます。これは圧縮で3次、膨張で線形です。(4) P= C 0 + C 1 μ+ C 2 μ 2 + C 3 μ 3 +( C 4 + C 5 μ )E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey ypa0Jaam4qamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadoeadaWg aaWcbaGaaGymaaqabaGccqaH8oqBcqGHRaWkcaWGdbWaaSbaaSqaai aaikdaaeqaaOGaeqiVd02aaWbaaSqabeaacaaIYaaaaOGaey4kaSIa am4qamaaBaaaleaacaaIZaaabeaakiabeY7aTnaaCaaaleqabaGaaG 4maaaakiabgUcaRmaabmaabaGaam4qamaaBaaaleaacaaI0aaabeaa kiabgUcaRiaadoeadaWgaaWcbaGaaGynaaqabaGccqaH8oqBaiaawI cacaGLPaaacaWGfbaaaa@531D@
Cパラメータは流体力係数と呼ばれる入力パラメータです。材料の挙動に対する仮説により、これらの係数を決めることが可能となります:
  • 非圧縮性気体
  • 線形弾性材料
  • 理想気体

この例題は理想気体のモデル化のみに焦点を当てます。

結果

理論解

このセクションの目的は、圧力、内部エネルギーと音速を1つのパラメーター V または μ の関数としてプロットすることです。
  1. 圧力:
    理想気体の圧力は以下で与えられます:(5) P V = ( γ 1 ) E int MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbGaamOvaiabg2da9maabmaabaGaeq4SdCMaeyOeI0IaaGym aaGaayjkaiaawMcaaiaadweadaWgaaWcbaGaciyAaiaac6gacaGG0b aabeaaaaa@4434@
    したがって:(6) d P ( V , E int ) = P V | E int d V + P E int | V d E int MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaam iuamaabmaabaGaamOvaiaacYcacaWGfbWaaSbaaSqaaiGacMgacaGG UbGaaiiDaaqabaaakiaawIcacaGLPaaacqGH9aqpdaabcaqaamaala aabaGaeyOaIyRaamiuaaqaaiabgkGi2kaadAfaaaaacaGLiWoadaWg aaWcbaGaamyramaaBaaameaaciGGPbGaaiOBaiaacshaaeqaaaWcbe aakiaadsgacaWGwbGaey4kaSYaaqGaaeaadaWcaaqaaiabgkGi2kaa dcfaaeaacqGHciITcaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaa qabaaaaaGccaGLiWoadaWgaaWcbaGaamOvaaqabaGccaWGKbGaamyr amaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaaaa@5CDA@
    Radiossは内部エネルギー変化の計算に等エントロピー過程の仮説を仮定します:(7) d E int = P d V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaam yramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaOGaeyypa0JaeyOe I0IaamiuaiaadsgacaWGwbaaaa@40B5@
    この理論は以下の微分方程式を与えます:(8) d P d V = γ P V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaai aadsgacaWGqbaabaGaamizaiaadAfaaaGaeyypa0JaeyOeI0YaaSaa aeaacqaHZoWzcaWGqbaabaGaamOvaaaaaaa@4053@
    これは y ' + γ x = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai 4jaiabgUcaRmaalaaabaGaeq4SdCgabaGaamiEaaaacqGH9aqpcaaI Waaaaa@3E66@ という形式を持ち、一般解は次のとおりです:(9) y = C s t . x γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG5bGaeyypa0Jaam4qaiaadohacaWG0bGaaiOlaiaadIhadaah aaWcbeqaaiabgkHiTiabeo7aNbaaaaa@4204@
    圧力はポリトロープな状態にもあります:(10) P V γ = P 0 V 0 γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaam OvamaaCaaaleqabaGaeq4SdCgaaOGaeyypa0JaamiuamaaBaaaleaa caaIWaaabeaakiaadAfadaWgaaWcbaGaaGimaaqabaGcdaahaaWcbe qaaiabeo7aNbaaaaa@415F@ (11) P ( V ) = P 0 ( V 0 V ) γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacaWGwbaacaGLOaGaayzkaaGaeyypa0Jaamiu amaaBaaaleaacaaIWaaabeaakmaabmaabaWaaSaaaeaacaWGwbWaaS baaSqaaiaaicdaaeqaaaGcbaGaamOvaaaaaiaawIcacaGLPaaadaah aaWcbeqaaiabeo7aNbaaaaa@44EE@

    ここで、 γ は材料定数です(熱容量の比)。原子の気体では、 γ =1.4。空気は主に2原子の気体からなるので、通常空気のガンマは1.4に設定します。

  2. 内部エネルギー:
    式 5式 11から直接の結果を導けます:(12) E int ( V ) = P 0 V 0 γ ( γ 1 ) V γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaGcdaqadaqa aiaadAfaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaadcfadaWgaa WcbaGaaGimaaqabaGccaWGwbWaaSbaaSqaaiaaicdaaeqaaOWaaWba aSqabeaacqaHZoWzaaaakeaadaqadaqaaiabeo7aNjabgkHiTiaaig daaiaawIcacaGLPaaacaWGwbWaaWbaaSqabeaacqaHZoWzcqGHsisl caaIXaaaaaaaaaa@4EC7@
  3. 音速:
    理想気体の音速は:(13) c = γ P ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbGaey ypa0ZaaOaaaeaadaWcaaqaaiabeo7aNjaadcfaaeaacqaHbpGCaaaa leqaaaaa@3DBC@
    式 11 は体積に関する表現を与えます:(14) c = γ P 0 ρ 0 ( V 0 V ) γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbGaeyypa0ZaaSaaaeaacqaHZoWzcaWGqbWaaSraaSqaaiaa icdaaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaaaakmaabm aabaWaaSaaaeaacaWGwbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamOv aaaaaiaawIcacaGLPaaadaahaaWcbeqaaiabeo7aNjabgkHiTiaaig daaaaaaa@48AD@
圧力、内部エネルギーと音速は V μ の両方で表現されます。
表 1. 理論解
圧力(Pa) 内部エネルギー密度(J) 音速(m/s)
P R E F ( V ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaW baaSqabeaacaWGsbGaamyraiaadAeaaaGcdaqadaqaaiaadAfaaiaa wIcacaGLPaaaaaa@3D44@ P R E F ( μ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaW baaSqabeaacaWGsbGaamyraiaadAeaaaGcdaqadaqaaiabeY7aTbGa ayjkaiaawMcaaaaa@3E1F@ ρ e R E F ( V ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCca qGLbWaaWbaaSqabeaacaWGsbGaamyraiaadAeaaaGcdaqadaqaaiaa dAfaaiaawIcacaGLPaaaaaa@3F17@ ρ e R E F ( μ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCca qGLbWaaWbaaSqabeaacaWGsbGaamyraiaadAeaaaGcdaqadaqaaiab eY7aTbGaayjkaiaawMcaaaaa@3FF2@ c R E F ( V ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaW baaSqabeaacaWGsbGaamyraiaadAeaaaGcdaqadaqaaiaadAfaaiaa wIcacaGLPaaaaaa@3D57@ c R E F ( μ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaW baaSqabeaacaWGsbGaamyraiaadAeaaaGcdaqadaqaaiabeY7aTbGa ayjkaiaawMcaaaaa@3E32@
P 0 ( V 0 V ) γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaadaWcaaqaaiaa dAfadaWgaaWcbaGaaGimaaqabaaakeaacaWGwbaaaaGaayjkaiaawM caamaaCaaaleqabaGaeq4SdCgaaaaa@40AF@ P 0 ( 1 + μ ) γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaaIXaGaey4k aSIaeqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacqaHZoWzaaaaaa@414C@ P 0 ( γ 1 ) ( V 0 V ) γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiaadcfadaWgaaWcbaGaaGimaaqabaaakeaadaqadaqa aiabeo7aNjabgkHiTiaaigdaaiaawIcacaGLPaaaaaWaaeWaaeaada WcaaqaaiaadAfadaWgaaWcbaGaaGimaaqabaaakeaacaWGwbaaaaGa ayjkaiaawMcaamaaCaaaleqabaGaeq4SdCMaeyOeI0IaaGymaaaaaa a@473F@ P 0 ( γ 1 ) ( 1 + μ ) γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiaadcfadaWgaaWcbaGaaGimaaqabaaakeaadaqadaqa aiabeo7aNjabgkHiTiaaigdaaiaawIcacaGLPaaaaaWaaeWaaeaaca aIXaGaey4kaSIaeqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacqaH ZoWzcqGHsislcaaIXaaaaaaa@47DC@ γ P 0 ρ 0 ( V 0 V ) γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaGcaaqaamaalaaabaGaeq4SdCMaamiuamaaBaaaleaacaaIWaaa beaaaOqaaiabeg8aYnaaBaaaleaacaaIWaaabeaaaaGcdaqadaqaam aalaaabaGaamOvamaaBaaaleaacaaIWaaabeaaaOqaaiaadAfaaaaa caGLOaGaayzkaaWaaWbaaSqabeaacqaHZoWzcqGHsislcaaIXaaaaa qabaaaaa@46CE@ γ P 0 ρ 0 ( 1 + μ ) γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaGcaaqaamaalaaabaGaeq4SdCMaamiuamaaBaaaleaacaaIWaaa beaaaOqaaiabeg8aYnaaBaaaleaacaaIWaaabeaaaaGcdaqadaqaai aaigdacqGHRaWkcqaH8oqBaiaawIcacaGLPaaadaahaaWcbeqaaiab eo7aNjabgkHiTiaaigdaaaaabeaaaaa@476B@
対応するプロットは:

ex43_perfect_gas_pressure
図 4. 理想気体圧力

ex43_perfect_gas_internal_energy
図 5. 理想気体内部エネルギー

ex43_perfect_gas_sound_speed
図 6. 理想気体音速

材料コントロールカード

/MAT/LAW6 (HYDROまたはHYD_VISC)/EOS/POLYNOMIALは静水圧の計算にこの式を使用します。絶対値または相対変化を考慮することが可能です。材料は理想気体と想定します。以下のケースが調査されます。
表 2. 理想気体のモデリング定式化
ケース 数学的モデリング 圧力 エネルギー
1 P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aaaa@3E65@ 絶対値 絶対値
2 Δ P ( μ , E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjk aiaawMcaaaaa@3FCB@ 相対値 絶対値
3 Δ P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaeuiLdqKaamyr aaGaayjkaiaawMcaaaaa@4131@ 相対値 相対値
4 P ( μ , Δ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaeuiLdqKaamyraaGaayjk aiaawMcaaaaa@3FCB@ 絶対値 相対値

音速と時間ステップ

LAW6は流体の通常表現で音速を計算します:(15) c 2 = d P d ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaWG KbGaamiuaaqaaiaadsgacqaHbpGCaaaaaa@402F@
これは μ の関数として書くことができます:(16) μ = ρ ρ 0 1 1 d ρ = 1 ρ 0 1 d μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaH8oqBcqGH9aqpdaWcaaqaaiabeg8aYbqaaiabeg8aYnaaBaaa leaacaaIWaaabeaaaaGccqGHsislcaaIXaGaeyO0H49aaSaaaeaaca aIXaaabaGaamizaiabeg8aYbaacqGH9aqpdaWcaaqaaiaaigdaaeaa cqaHbpGCdaWgaaWcbaGaaGimaaqabaaaaOWaaSaaaeaacaaIXaaaba GaamizaiabeY7aTbaaaaa@4F77@
したがって:(17) c 2 = 1 ρ 0 d P d μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaI XaaabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaaaakmaalaaabaGaam izaiaadcfaaeaacaWGKbGaeqiVd0gaaaaa@43A0@
P の内部エネルギー E μ に関する全微分は:(18) d P ( μ , E ) = P μ | E d μ + P E | μ d E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbGaamiuamaabmaabaGaeqiVd0MaaiilaiaadweaaiaawIca caGLPaaacqGH9aqpdaabcaqaamaalaaabaGaeyOaIyRaamiuaaqaai abgkGi2kabeY7aTbaaaiaawIa7amaaBaaaleaacaWGfbaabeaakiaa ysW7caWGKbGaeqiVd0Maey4kaSYaaqGaaeaadaWcaaqaaiabgkGi2k aadcfaaeaacqGHciITcaWGfbaaaaGaayjcSdWaaSbaaSqaaiabeY7a TbqabaGccaWGKbGaamyraaaa@570F@
等エントロピー変換の場合(即ち可逆で断念の場合、体積 V での内部エネルギー E int と圧力 P は以下で与えられます:(19) d E int = P d V
E int E の関係を用いて以下が導かれます:(20) d E = P V 0 d V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbGaamyraiabg2da9iabgkHiTmaalaaabaGaamiuaaqaaiaa dAfadaWgaaWcbaGaaGimaaqabaaaaOGaamizaiaadAfaaaa@40F1@
μ は体積比に関して以下のように表せます:(21) μ= v 0 v 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcq GH9aqpdaWcaaqaaiaadAhadaWgaaWcbaGaaGimaaqabaaakeaacaWG 2baaaiabgkHiTiaaigdaaaa@3EC2@
対壁変化に対する関数の変化も以下のように表せます:(22) d μ = V 0 V 2 d V = ( 1 + μ ) 2 V 0 d V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbGaeqiVd0Maeyypa0JaeyOeI0YaaSaaaeaacaWGwbWaaSba aSqaaiaaicdaaeqaaaGcbaGaamOvamaaCaaaleqabaGaaGOmaaaaaa GccaWGKbGaamOvaiabg2da9iabgkHiTmaalaaabaWaaeWaaeaacaaI XaGaey4kaSIaeqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaaGcbaGaamOvamaaBaaaleaacaaIWaaabeaaaaGccaWGKbGaamOv aaaa@4E37@
単位体積当たりの内部エネルギー変化 E はその時:(23) d E = P ( 1 + μ ) 2 d μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGKbGaamyraiabg2da9iabgkHiTmaalaaabaGaamiuaaqaamaa bmaabaGaaGymaiabgUcaRiabeY7aTbGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaaaaGccaWGKbGaeqiVd0gaaa@45D0@ (24) dP( μ,E ) dμ = P μ | E + P ( 1+μ ) 2 P E | μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaai aadsgacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaa wMcaaaqaaiaadsgacqaH8oqBaaGaeyypa0ZaaqGaaeaadaWcaaqaai abgkGi2kaadcfaaeaacqGHciITcqaH8oqBaaaacaGLiWoadaWgaaWc baGaamyraaqabaGccqGHRaWkdaWcaaqaaiaadcfaaeaadaqadaqaai aaigdacqGHRaWkcqaH8oqBaiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaaaaOWaaqGaaeaadaWcaaqaaiabgkGi2kaadcfaaeaacqGHci ITcaWGfbaaaaGaayjcSdWaaSbaaSqaaiabeY7aTbqabaaaaa@591A@
最後に、音速は以下のように与えられます:(25) c 2 = 1 ρ 0 P μ | E + P ρ 0 ( 1 + μ ) 2 P E | μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaI XaaabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaaaakmaaeiaabaWaaS aaaeaacqGHciITcaWGqbaabaGaeyOaIyRaeqiVd0gaaaGaayjcSdWa aSbaaSqaaiaadweaaeqaaOGaey4kaSYaaSaaaeaacaWGqbaabaGaeq yWdi3aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaaIXaGaey4kaSIa eqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaakmaaei aabaWaaSaaaeaacqGHciITcaWGqbaabaGaeyOaIyRaamyraaaaaiaa wIa7amaaBaaaleaacqaH8oqBaeqaaaaa@5969@
この式を用いて、状態 P ( μ , E ) の特定の方程式の音速を計算できます。理想気体の場合は、各タイプの定式化(絶対または相対)について、EOSを次のように記述できます:(26) P ( μ , E ) = C 0 + C 1 μ + ( C 4 + C 5 μ ) E
式 25 は音速の計算に用いられます:(27) P μ | E = C 1 + C 5 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaabcaqaamaalaaabaGaeyOaIyRaamiuaaqaaiabgkGi2kabeY7a TbaaaiaawIa7amaaBaaaleaacaWGfbaabeaakiabg2da9iaadoeada WgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaiwda aeqaaOGaamyraaaa@46FC@ (28) P E | μ = C 4 + C 5 μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaabcaqaamaalaaabaGaeyOaIyRaamiuaaqaaiabgkGi2kaadwea aaaacaGLiWoadaWgaaWcbaGaeqiVd0gabeaakiabg2da9iaadoeada WgaaWcbaGaaGinaaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaiwda aeqaaOGaeqiVd0gaaa@47EB@ (29) c 2 = C 1 + C 5 E ρ 0 + C 0 + C 1 μ + ( C 4 + C 5 μ ) E ρ 0 ( 1 + μ ) 2 ( C 4 + C 5 μ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaWG dbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam4qamaaBaaaleaaca aI1aaabeaakiaadweaaeaacqaHbpGCcaaIWaaaamaaBaaaleaaaeqa aOGaey4kaSYaaSaaaeaacaWGdbWaaSbaaSqaaiaaicdaaeqaaOGaey 4kaSIaam4qamaaBaaaleaacaaIXaaabeaakiabeY7aTjabgUcaRmaa bmaabaGaam4qamaaBaaaleaacaaI0aaabeaakiabgUcaRiaadoeada WgaaWcbaGaaGynaaqabaGccqaH8oqBaiaawIcacaGLPaaacaWGfbaa baGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaaIXaGaey 4kaSIaeqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa kmaabmaabaGaam4qamaaBaaaleaacaaI0aaabeaakiabgUcaRiaado eadaWgaaWcbaGaaGynaaqabaGccqaH8oqBaiaawIcacaGLPaaaaaa@63F4@
この計算は次にそれぞれの4ケースに適用されます。
表 3. 数値解析結果の音速対理論表現
ケース C0 C1 C4 C5 c2

以下より: 式 25

理論値との比較
1 0 0 γ 1 γ 1 γ ( γ 1 ) E ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiabeo7aNnaabmaabaGaeq4SdCMaeyOeI0IaaGymaaGa ayjkaiaawMcaaiaadweaaeaacqaHbpGCdaWgaaWcbaGaaGimaaqaba aaaaaa@42D6@ c= c REF MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbGaey ypa0Jaam4yamaaCaaaleqabaGaamOuaiaadweacaWGgbaaaaaa@3CD7@
2 0 0 γ 1 γ 1 γ ( γ 1 ) E ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiabeo7aNnaabmaabaGaeq4SdCMaeyOeI0IaaGymaaGa ayjkaiaawMcaaiaadweaaeaacqaHbpGCdaWgaaWcbaGaaGimaaqaba aaaaaa@42D6@ c = c R E F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbGaey ypa0Jaam4yamaaCaaaleqabaGaamOuaiaadweacaWGgbaaaaaa@3CD7@
3 E 0 ( γ 1 ) E 0 ( γ 1 ) γ 1 γ 1 γ ( γ 1 ) ( E + E 0 ) ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiabeo7aNnaabmaabaGaeq4SdCMaeyOeI0IaaGymaaGa ayjkaiaawMcaamaabmaabaGaamyraiabgUcaRiaadweadaWgaaWcba GaaGimaaqabaaakiaawIcacaGLPaaaaeaacqaHbpGCdaWgaaWcbaGa aGimaaqabaaaaaaa@46FB@ c = c R E F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbGaey ypa0Jaam4yamaaCaaaleqabaGaamOuaiaadweacaWGgbaaaaaa@3CD7@
4 E 0 ( γ 1 ) E 0 ( γ 1 ) γ 1 γ 1 γ ( γ 1 ) ( E + E 0 ) ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiabeo7aNnaabmaabaGaeq4SdCMaeyOeI0IaaGymaaGa ayjkaiaawMcaamaabmaabaGaamyraiabgUcaRiaadweadaWgaaWcba GaaGimaaqabaaakiaawIcacaGLPaaaaeaacqaHbpGCdaWgaaWcbaGa aGimaaqabaaaaaaa@46FB@ c = c R E F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbGaey ypa0Jaam4yamaaCaaaleqabaGaamOuaiaadweacaWGgbaaaaaa@3CD7@

それぞれの4つの定式化に対して、Radiossにより計算された音速は理論値と一致しています。時間ステップとサイクル数は影響されません。

ケース 1:圧力とエネルギーの両方が絶対値

  1. 圧力:
    状態方程式(30) P = ( γ 1 ) E int V = ( γ 1 ) ( 1 + μ ) E int V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey ypa0ZaaeWaaeaacqaHZoWzcqGHsislcaaIXaaacaGLOaGaayzkaaWa aSaaaeaacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaaake aacaWGwbaaaiabg2da9maabmaabaGaeq4SdCMaeyOeI0IaaGymaaGa ayjkaiaawMcaamaabmaabaGaaGymaiabgUcaRiabeY7aTbGaayjkai aawMcaamaalaaabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacsha aeqaaaGcbaGaamOvamaaBaaaleaacaaIWaaabeaaaaaaaa@5342@

    ここで、 E int | t = 0 = E 0 V 0 = P 0 V 0 γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabcaqaai aadweadaWgaaWcbaGaciyAaiaac6gacaGG0baabeaaaOGaayjcSdWa aSbaaSqaaiaadshacqGH9aqpcaaIWaaabeaakiabg2da9iaadweada WgaaWcbaGaaGimaaqabaGccaWGwbWaaSbaaSqaaiaaicdaaeqaaOGa eyypa0ZaaSaaaeaacaWGqbWaaSbaaSqaaiaaicdaaeqaaOGaamOvam aaBaaaleaacaaIWaaabeaaaOqaaiabeo7aNjabgkHiTiaaigdaaaaa aa@4C45@

    多項式の係数を特定すると以下が導かれます:(31) P = ( C 4 + C 5 μ ) E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey ypa0ZaaeWaaeaacaWGdbWaaSbaaSqaaiaaisdaaeqaaOGaey4kaSIa am4qamaaBaaaleaacaaI1aaabeaakiabeY7aTbGaayjkaiaawMcaai aadweaaaa@41A6@

    ここで、 C 4 = C 5 = ( γ 1 ) ; E 0 = P 0 γ 1 ; P s h = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGdbWaaSbaaSqaaiaaisdaaeqaaOGaeyypa0Jaam4qamaaBeaa leaacaaI1aaabeaakiaaykW7cqGH9aqpdaqadaqaaiabeo7aNjabgk HiTiaaigdaaiaawIcacaGLPaaacaGGSaGaaGzbVlaadweadaWgaaWc baGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaadcfadaWgaaWcbaGaaG imaaqabaaakeaacqaHZoWzcqGHsislcaaIXaaaaiaacYcacaaMf8Ua amiuamaaBaaaleaacaWGZbGaamiAaaqabaGccqGH9aqpcaaIWaaaaa@55D0@

  2. 対応する入力:
    #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
    /MAT/HYD_VISC/1
    Polynomial EOS-Absolute Pressure-Absolute Energy
    #              RHO_I               RHO_0
                   1.204                   0
    #                Knu                Pmin
                       0                   0
    /EOS/POLYNOMIAL/1
    Polynomial EOS-Absolute Pressure-Absolute Energy
    #                 C0                  C1                  C2                  C3
                       0                   0                   0                   0
    #                 C4                  C5                  E0                 Psh               RHO_0
                      .4                  .4              250000                   0               1.204
    #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
  3. 結果の出力:
    表 4.
    時刻歴応答 寸法 初期値 Unit
    /TH/BRICK ( P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbaaaa@383D@ ) P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbaaaa@383D@ P 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaaicdaaeqaaaaa@3923@ 圧力
    /TH (IE) E int ( = E V 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiGacMgacaGGUbGaaiiDaaqabaGcdaqadaqaaiabg2da9iaa dweacqGHflY1caWGwbWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaay zkaaaaaa@42AF@ E 0 V 0 エネルギー
    /TH/BRICK (IE) E int / V E 0 圧力
  4. 理論界との比較
    理想気体圧力の数値解析結果は、時刻歴で与えられます。要素時刻歴(/TH/BRICK)でこれを表示できます。この結果を理論解と比較します。曲線は重ねて示されます。

    ex43_numerical_pressure_model1
    図 7. 数値的圧力、モデル1
    内部エネルギーは2つの異なる方法で得ることができます。1つ目は、要素時刻歴(/TH/BRICK)に記録された内部エネルギー密度( E int / V )です。2つ目は、全体の時刻歴からの内部エネルギー e l e m e n t E int MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaeqaqaai aadweadaWgaaWcbaGaciyAaiaac6gacaGG0baabeaaaeaacaWGLbGa amiBaiaadwgacaWGTbGaamyzaiaad6gacaWG0baabeqdcqGHris5aa aa@439C@ で、これは、モデルが単一要素であるためです。

    ex43_numerical_internal_energy_model1
    図 8. 数値的内部エネルギー、モデル1

ケース 2:圧力が相対値でエネルギーが絶対値

  1. 圧力:
    状態方程式(32) P ( μ , E ) = ( γ 1 ) ( 1 + μ ) E int V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGqbWaaeWaaeaacqaH8oqBcaGGSaGaamyraaGaayjkaiaawMca aiabg2da9maabmaabaGaeq4SdCMaeyOeI0IaaGymaaGaayjkaiaawM caamaabmaabaGaaGymaiabgUcaRiabeY7aTbGaayjkaiaawMcaamaa laaabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaaGcba GaamOvamaaBaaaleaacaaIWaaabeaaaaaaaa@4EC9@
    相対圧力:(33) Δ P = P ( μ , E ) P 0 = ( γ 1 ) ( 1 + μ ) E int V 0 P 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWGqbGaeyypa0JaamiuamaabmaabaGaeqiVd0Maaiil aiaadweaaiaawIcacaGLPaaacqGHsislcaWGqbWaaSbaaSqaaiaaic daaeqaaOGaeyypa0ZaaeWaaeaacqaHZoWzcqGHsislcaaIXaaacaGL OaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaeqiVd0gacaGLOaGaay zkaaWaaSaaaeaacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqa baaakeaacaWGwbWaaSbaaSqaaiaaicdaaeqaaaaakiabgkHiTiaadc fadaWgaaWcbaGaaGimaaqabaaaaa@576E@
    多項式の係数を特定すると以下が導かれます:(34) Δ P = P = P s h = P s h + ( C 4 + C 5 μ ) E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHuoarca WGqbGaeyypa0Jaamiuaiabg2da9iaadcfadaWgaaWcbaGaam4Caiaa dIgaaeqaaOGaeyypa0JaeyOeI0IaamiuamaaBaaaleaacaWGZbGaam iAaaqabaGccqGHRaWkdaqadaqaaiaadoeadaWgaaWcbaGaaGinaaqa baGccqGHRaWkcaWGdbWaaSbaaSqaaiaaiwdaaeqaaOGaeqiVd0gaca GLOaGaayzkaaGaamyraaaa@4D9C@

    ここで、 C 4 = C 5 = ( γ 1 ) ; E 0 = P 0 γ 1 ; P s h = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGdbWaaSbaaSqaaiaaisdaaeqaaOGaeyypa0Jaam4qamaaBeaa leaacaaI1aaabeaakiaaykW7cqGH9aqpdaqadaqaaiabeo7aNjabgk HiTiaaigdaaiaawIcacaGLPaaacaGGSaGaaGzbVlaadweadaWgaaWc baGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaadcfadaWgaaWcbaGaaG imaaqabaaakeaacqaHZoWzcqGHsislcaaIXaaaaiaacYcacaaMf8Ua amiuamaaBaaaleaacaWGZbGaamiAaaqabaGccqGH9aqpcaaIWaaaaa@55D0@

    最小圧力: (35) P min = P 0

    P > 0 Δ P P 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey Opa4JaaGimaiabgkDiElabfs5aejaadcfacqGHLjYScqGHsislcaWG qbWaaSbaaSqaaiaaicdaaeqaaaaa@4304@ のため、最小圧力は0以外の値に設定される必要があります。

  2. 対応する入力:
    #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
    /MAT/HYD_VISC/1
    Polynomial EOS-Relative Pressure-Absolute Energy
    #              RHO_I               RHO_0
                   1.204                   0
    #                Knu                Pmin
               1.5256E-5             -100000
    /EOS/POLYNOMIAL/1
    Polynomial EOS-Relative Pressure-Absolute Energy
    #                 C0                  C1                  C2                  C3
                       0                   0                   0                   0
    #                 C4                  C5                  E0                 Psh               RHO_0
                      .4                  .4              250000              100000               1.204
    #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
  3. 結果の出力:
    時刻歴応答 寸法 初期値 Unit
    /TH/BRICK ( P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbaaaa@383D@ ) Δ P 0 圧力
    /TH (IE) E int ( = E V 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiGacMgacaGGUbGaaiiDaaqabaGcdaqadaqaaiabg2da9iaa dweacqGHflY1caWGwbWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaay zkaaaaaa@42AF@ E 0 V 0 エネルギー
    /TH/BRICK (IE) E int / V E 0 圧力
  4. 理論界との比較

    理想気体圧力の数値解析結果は、時刻歴で与えられます。要素時刻歴(/TH/BRICK)でこれを表示できます。この結果を理論解と比較します。曲線は重ねて示されます。

    要素時刻歴(/TH/BRICK)は、Pshに対する相対圧力です。結果の曲線は、Psh値でシフトされ、0から開始します。

    ex43_numerical_pressure_model2
    図 9. 数値的圧力、モデル2
    内部エネルギーは2つの異なる方法で得ることができます。1つ目は、要素時刻歴(/TH/BRICK)に記録された内部エネルギー密度( E int / V )です。2つ目は、全体の時刻歴からの内部エネルギー e l e m e n t E int MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaeqaqaai aadweadaWgaaWcbaGaciyAaiaac6gacaGG0baabeaaaeaacaWGLbGa amiBaiaadwgacaWGTbGaamyzaiaad6gacaWG0baabeqdcqGHris5aa aa@439C@ で、これは、モデルが単一要素であるためです。

    ex43_numerical_internal_energy_model2
    図 10. 数値的内部エネルギー、モデル2

ケース 3:圧力とエネルギーの両方が相対値

  1. 圧力:
    状態方程式(36) P = ( γ 1 ) ( 1 + μ ) E int V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey ypa0ZaaeWaaeaacqaHZoWzcqGHsislcaaIXaaacaGLOaGaayzkaaWa aeWaaeaacaaIXaGaey4kaSIaeqiVd0gacaGLOaGaayzkaaWaaSaaae aacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaaakeaacaWG wbWaaSbaaSqaaiaaicdaaeqaaaaaaaa@48A0@
    初期内部エネルギーを導入することができます:(37) E int = E int + ( E int | t = 0 E int | t = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiGacMgacaGGUbGaaiiDaaqabaGccqGH9aqpcaWGfbWaaSba aSqaaiGacMgacaGGUbGaaiiDaaqabaGccqGHRaWkdaqadaqaamaaei aabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaaGccaGL iWoadaWgaaWcbaGaamiDaiabg2da9iaaicdaaeqaaOGaeyOeI0Yaaq GaaeaacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaaakiaa wIa7amaaBaaaleaacaWG0bGaeyypa0JaaGimaaqabaaakiaawIcaca GLPaaaaaa@5433@
    参照値からの圧力は以下を与えます:(38) P P 0 = Δ P = ( γ 1 ) ( 1 + μ ) ( Δ E + E 0 ) P 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey OeI0IaamiuamaaBaaaleaacaaIWaaabeaakiabg2da9iabfs5aejaa dcfacqGH9aqpdaqadaqaaiabeo7aNjabgkHiTiaaigdaaiaawIcaca GLPaaadaqadaqaaiaaigdacqGHRaWkcqaH8oqBaiaawIcacaGLPaaa daqadaqaaiabfs5aejaadweacqGHRaWkcaWGfbWaaSbaaSqaaiaaic daaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaamiuamaaBaaaleaacaaI Waaabeaaaaa@51E6@

    ここで、 Δ E = E int E int | t = 0 V 0 ; E 0 = E int | t = 0 V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHuoarca WGfbGaeyypa0ZaaSaaaeaacaWGfbWaaSbaaSqaaiGacMgacaGGUbGa aiiDaaqabaGccqGHsisldaabcaqaaiaadweadaWgaaWcbaGaciyAai aac6gacaGG0baabeaaaOGaayjcSdWaaSbaaSqaaiaadshacqGH9aqp caaIWaaabeaaaOqaaiaadAfadaWgaaWcbaGaaGimaaqabaaaaOGaai 4oaiaaysW7caWGfbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0ZaaSaa aeaadaabcaqaaiaadweadaWgaaWcbaGaciyAaiaac6gacaGG0baabe aaaOGaayjcSdWaaSbaaSqaaiaadshacqGH9aqpcaaIWaaabeaaaOqa aiaadAfadaWgaaWcbaGaaGimaaqabaaaaaaa@58D7@

    多項式の係数を特定すると以下が導かれます:(39) Δ P = P P s h = C 0 + C 1 μ + ( C 4 + C 5 μ ) Δ E P s h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHuoarca WGqbGaeyypa0JaamiuaiabgkHiTiaadcfadaWgaaWcbaGaam4Caiaa dIgaaeqaaOGaeyypa0Jaam4qamaaBaaaleaacaaIWaaabeaakiabgU caRiaadoeadaWgaaWcbaGaaGymaaqabaGccqaH8oqBcqGHRaWkdaqa daqaaiaadoeadaWgaaWcbaGaaGinaaqabaGccqGHRaWkcaWGdbWaaS baaSqaaiaaiwdaaeqaaOGaeqiVd0gacaGLOaGaayzkaaGaeuiLdqKa amyraiabgkHiTiaadcfadaWgaaWcbaGaam4CaiaadIgaaeqaaaaa@54E8@

    ここで、 C 0 = C 1 = E 0 ( γ 1 ) C 4 = C 5 = γ 1 Δ E 0 = 0 および P s h = P 0

    最小圧力:(40) P min = P 0

    P 0 Δ P P 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey yzImRaaGimaiabgkDiElabfs5aejaadcfacqGHLjYScqGHsislcaWG qbWaaSbaaSqaaiaaicdaaeqaaaaa@43C2@ のため、最小圧力は0以外の値に設定される必要があります。

  2. 対応する入力:
    #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
    /MAT/HYD_VISC/1
    Polynomial EOS-Relative Pressure-Absolute Energy
    #              RHO_I               RHO_0
                   1.204                   0
    #                Knu                Pmin
               1.5256E-5             -100000
    /EOS/POLYNOMIAL/1
    Polynomial EOS-Relative Pressure-Absolute Energy
    #                 C0                  C1                  C2                  C3
                  100000              100000                   0                   0
    #                 C4                  C5                  E0                 Psh               RHO_0
                      .4                  .4                   0              100000               1.204
    #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
  3. 結果の出力:
    時刻歴応答 寸法 初期値 Unit
    /TH/BRICK ( P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbaaaa@383D@ ) Δ P 0 圧力
    /TH (IE) E int ( = Δ E V 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiGacMgacaGGUbGaaiiDaaqabaGcdaqadaqaaiabg2da9iab fs5aejaadweacqGHflY1caWGwbWaaSbaaSqaaiaaicdaaeqaaaGcca GLOaGaayzkaaaaaa@4415@ 0 エネルギー
    /TH/BRICK (IE) Δ E int / V 0 圧力
  4. 理論界との比較

    理想気体圧力の数値解析結果は、時刻歴で与えられます。要素時刻歴(/TH/BRICK)でこれを表示できます。この結果を理論解と比較します。曲線は重ねて示されます。

    要素時刻歴(/TH/BRICK)は、Pshに対する相対圧力です。結果の曲線は、Psh値でシフトされ、0から開始します。

    ex43_numerical_pressure_model3
    図 11. 数値的圧力、モデル3
    内部エネルギーは2つの異なる方法で得ることができます。1つ目は、要素時刻歴(/TH/BRICK)に記録された内部エネルギー密度( E int / V )です。2つ目は、全体の時刻歴からの内部エネルギー e l e m e n t E int MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaeqaqaai aadweadaWgaaWcbaGaciyAaiaac6gacaGG0baabeaaaeaacaWGLbGa amiBaiaadwgacaWGTbGaamyzaiaad6gacaWG0baabeqdcqGHris5aa aa@439C@ で、これは、モデルが単一要素であるためです。数値解析結果の内部エネルギーは初期エネルギーからの相対値で、絶対値から E 0 V 0 値だけシフトされ、0から開始します。

    ex43_numerical_internal_energy_model3
    図 12. 数値的内部エネルギー、モデル3

ケース 4:圧力が絶対値でエネルギーが相対値

  1. 圧力:
    状態方程式(41) P = ( γ 1 ) ( 1 + μ ) E int V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey ypa0ZaaeWaaeaacqaHZoWzcqGHsislcaaIXaaacaGLOaGaayzkaaWa aeWaaeaacaaIXaGaey4kaSIaeqiVd0gacaGLOaGaayzkaaWaaSaaae aacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaaakeaacaWG wbWaaSbaaSqaaiaaicdaaeqaaaaaaaa@48A0@
    初期内部エネルギーを導入することができます:(42) E int = E int + ( E int | t = 0 E int | t = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiGacMgacaGGUbGaaiiDaaqabaGccqGH9aqpcaWGfbWaaSba aSqaaiGacMgacaGGUbGaaiiDaaqabaGccqGHRaWkdaqadaqaamaaei aabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqaaaGccaGL iWoadaWgaaWcbaGaamiDaiabg2da9iaaicdaaeqaaOGaeyOeI0Yaaq GaaeaacaWGfbWaaSbaaSqaaiGacMgacaGGUbGaaiiDaaqabaaakiaa wIa7amaaBaaaleaacaWG0bGaeyypa0JaaGimaaqabaaakiaawIcaca GLPaaaaaa@5433@
    与えられた参照値からの圧力: (43) P = ( γ 1 ) ( 1 + μ ) ( Δ E + E 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey ypa0ZaaeWaaeaacqaHZoWzcqGHsislcaaIXaaacaGLOaGaayzkaaWa aeWaaeaacaaIXaGaey4kaSIaeqiVd0gacaGLOaGaayzkaaWaaeWaae aacqqHuoarcaWGfbGaey4kaSIaamyramaaBaaaleaacaaIWaaabeaa aOGaayjkaiaawMcaaaaa@494B@
    多項式の係数を特定すると以下が導かれます:(44) P = C 0 + C 1 μ + ( C 4 + C 5 μ ) Δ E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey ypa0Jaam4qamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadoeadaWg aaWcbaGaaGymaaqabaGccqaH8oqBcqGHRaWkdaqadaqaaiaadoeada WgaaWcbaGaaGinaaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaiwda aeqaaOGaeqiVd0gacaGLOaGaayzkaaGaeuiLdqKaamyraaaa@49F7@

    ここで C 0 = C 1 = E 0 ( γ 1 ) C 4 = C 5 = γ 1

  2. 対応する入力:
    #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
    /MAT/HYD_VISC/1
    Polynomial EOS-Relative Pressure-Absolute Energy
    #              RHO_I               RHO_0
                   1.204                   0
    #                Knu                Pmin
               1.5256E-5                   0
    /EOS/POLYNOMIAL/1
    Polynomial EOS-Relative Pressure-Absolute Energy
    #                 C0                  C1                  C2                  C3
                  100000              100000                   0                   0
    #                 C4                  C5                  E0                 Psh               RHO_0
                      .4                  .4                   0                   0               1.204
    #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
  3. 結果の出力:
    時刻歴応答 寸法 初期値 Unit
    /TH/BRICK ( P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbaaaa@383D@ ) P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbaaaa@383D@ P 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaaicdaaeqaaaaa@3923@ 圧力
    /TH (IE) E int ( = Δ E V 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiGacMgacaGGUbGaaiiDaaqabaGcdaqadaqaaiabg2da9iab fs5aejaadweacqGHflY1caWGwbWaaSbaaSqaaiaaicdaaeqaaaGcca GLOaGaayzkaaaaaa@4415@ 0 エネルギー
    /TH/BRICK (IE) Δ E int / V 0 圧力
  4. 理論界との比較
    要素時刻歴(/TH/BRICK)は、絶対圧力を与えます。この結果を理論解と比較します。曲線は重ねて示されます。

    ex43_numerical_pressure_model4
    図 13. 数値的圧力、モデル4
    内部エネルギーは2つの異なる方法で得ることができます。1つ目は、要素時刻歴(/TH/BRICK)に記録された内部エネルギー密度( Δ E int / V )です。2つ目は、全体の時刻歴からの内部エネルギー e l e m e n t E int MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaeqaqaai aadweadaWgaaWcbaGaciyAaiaac6gacaGG0baabeaaaeaacaWGLbGa amiBaiaadwgacaWGTbGaamyzaiaad6gacaWG0baabeqdcqGHris5aa aa@439C@ で、これは、モデルが単一要素であるためです。数値解析結果の内部エネルギーは初期エネルギーからの相対値で、絶対値から E 0 V 0 値だけシフトされ、0から開始します。

    ex43_numerical_internal_energy_model4
    図 14. 数値的内部エネルギー、モデル4