RD-E:0902 2つのボールの衝突

球形のボールの衝撃挙動を検討するために2つのボールが考慮されます。

入力ファイル

必要なモデルファイルのダウンロードについては、モデルファイルへのアクセスを参照してください。

本例題で使用されるモデルファイルは下記のとおり:

COLLISION_*.rad

モデル概要

軌跡の検討

ボールの挙動は、図 1に示すパラメーター(角度と速度)を用いて表現されます。数値結果は、完全な弾性反発を前提として(反発係数は1)、解析解と比較されます。

rad_ex_fig_9-11
図 1. 問題のデータ
初期値
V1
0.7m.s-1
V2
1m.s-1
θ 1
40°
θ 2
30
massball
44.514g

モデリング手法

ボールとテーブルは前のプールゲームの定義と同じプロパティを持ちます。テーブルの寸法は 900 mm x 450 mm x 25 mmでボールの直径は50.8 mmです。 ボールとテーブルはTYPE16 Lagrangeインターフェースを用いるために16節点厚肉シェル要素でメッシングされます。

rad_ex_fig_9-12
図 2. 問題のメッシュ(16節点厚肉シェル)
初期並進速度がボールに/INIV Engine オプションを通して与えられます。速度はXとY軸に投影されます。

rad_ex_fig_9-13
図 3. ボールに与えられた初速度(初期位置)

ボールには重力が考慮されます(0.00981 mm.ms-2)。

ボール-ボールとボール-テーブルの接触はTYPE16インターフェース(セカンダリ節点 / メイン16節点厚肉シェル接触)を用いてモデル化されます。ボール / ボール接触のインターフェース定義を図 4に示します。

rad_ex_fig_9-14
図 4. TYPE16 Lagrangeインターフェースのメインとセカンダリ側

解析解

1と2の2つのボールを置き、質量は m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaa@3AB0@ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaa@3AB0@ とし、同じ平面内を移動してそれぞれが衝突のコースで速度 V 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaa@3AB0@ V 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaa@3AB0@ で、に示すように接近します。

rad_ex_fig_9-15
図 5. 2つのボールの衝突の一般的問題
速度は局所軸 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGUbaaaa@39CA@ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGUbaaaa@39CA@ に投影されます。速度と、衝突後の速度の方向を取得するために、運動量保存則が2つのボールについて記録されます:(1) m 1 V 1 n + m 2 V 2 n = m 1 V 1 n ' m 2 V 2 n ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqGHsislcaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamOvamaaBaaa leaacaaIXaGaamOBaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaik daaeqaaOGaamOvamaaBaaaleaacaaIYaGaamOBaaqabaGccqGH9aqp caWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamOvamaaDaaaleaacaaIXa GaamOBaaqaaiaacEcaaaGccqGHsislcaWGTbWaaSbaaSqaaiaaikda aeqaaOGaamOvamaaDaaaleaacaaIYaGaamOBaaqaaiaacEcaaaaaaa@5073@
または(2) m 1 V 1 sin θ 1 + m 2 V 2 sin θ 2 = m 1 V 1 ' sin θ 1 ' m 2 V 2 ' sin θ 2 ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqGHsislcaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamOvamaaBaaa leaacaaIXaaabeaakiGacohacaGGPbGaaiOBaiabeI7aXnaaBaaale aacaaIXaaabeaakiabgUcaRiaad2gadaWgaaWcbaGaaGOmaaqabaGc caWGwbWaaSbaaSqaaiaaikdaaeqaaOGaci4CaiaacMgacaGGUbGaeq iUde3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaamyBamaaBaaaleaa caaIXaaabeaakiaadAfadaqhaaWcbaGaaGymaaqaaiaacEcaaaGcci GGZbGaaiyAaiaac6gacqaH4oqCdaqhaaWcbaGaaGymaaqaaiaacEca aaGccqGHsislcaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaamOvamaaDa aaleaacaaIYaaabaGaai4jaaaakiGacohacaGGPbGaaiOBaiabeI7a XnaaDaaaleaacaaIYaaabaGaai4jaaaaaaa@63FD@
衝撃波弾性で摩擦無しと仮定されます。並進運動エネルギーの維持が尊重され、回転エネルギーは考慮されないとすると:(3) 1 2 m 1 ( V 1 n ' 2 + V 1 t ' 2 ) + 1 2 m 2 ( V 2 n ' 2 + V 2 t ' 2 ) = 1 2 m 1 ( V 1 n 2 + V 1 t 2 ) + 1 2 m 2 ( V 2 n 2 + V 2 t 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaWcaaqaaiaaigdaaeaacaaIYaaaaiaad2gadaWgaaWcbaGaaGym aaqabaGcdaqadaqaaiaadAfadaqhaaWcbaGaaGymaiaad6gaaeaaca GGNaGaaGOmaaaakiabgUcaRiaadAfadaqhaaWcbaGaaGymaiaadsha aeaacaGGNaGaaGOmaaaaaOGaayjkaiaawMcaaiabgUcaRmaalaaaba GaaGymaaqaaiaaikdaaaGaamyBamaaBaaaleaacaaIYaaabeaakmaa bmaabaGaamOvamaaDaaaleaacaaIYaGaamOBaaqaaiaacEcacaaIYa aaaOGaey4kaSIaamOvamaaDaaaleaacaaIYaGaamiDaaqaaiaacEca caaIYaaaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaaba GaaGOmaaaacaWGTbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWG wbWaa0baaSqaaiaaigdacaWGUbaabaGaaGOmaaaakiabgUcaRiaadA fadaqhaaWcbaGaaGymaiaadshaaeaacaaIYaaaaaGccaGLOaGaayzk aaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGTbWaaSbaaS qaaiaaikdaaeqaaOWaaeWaaeaacaWGwbWaa0baaSqaaiaaikdacaWG UbaabaGaaGOmaaaakiabgUcaRiaadAfadaqhaaWcbaGaaGOmaiaads haaeaacaaIYaaaaaGccaGLOaGaayzkaaaaaa@719F@

この等式はその変形の傾向に一致する2つのボールの回復能力を示唆します。

この条件はエネルギー損失のない弾性衝撃の1つに等しくなります。系のエネルギーの維持は次のように与えられます:(4) ( V 2 n ' V 1 n ' ) = ( V 2 n V 1 n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aadaqadaqaaiaadAfadaqhaaWcbaGaaGOmaiaad6gaaeaacaGGNaaa aOGaeyOeI0IaamOvamaaDaaaleaacaaIXaGaamOBaaqaaiaacEcaaa aakiaawIcacaGLPaaacqGH9aqpcqGHsisldaqadaqaaiaadAfadaWg aaWcbaGaaGOmaiaad6gaaeqaaOGaeyOeI0IaamOvamaaBaaaleaaca aIXaGaamOBaaqabaaakiaawIcacaGLPaaaaaa@4C0C@

この関係は、相対速度の法線方向成分は弾性衝撃の間に、その逆に変化することを意味しています(反発係数値は単位の値に等しいため)。

法線方向成分に対して以下の式がチェックされる必要があります:(5) V 2 n ' = V 1 n ' = ( V 2 n V 1 n ) m 2 V 2 n ' + m 1 V 1 n ' = m 2 V 2 n + m 1 V 1 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakq aabeqaaiaadAfadaqhaaWcbaGaaGOmaiaad6gaaeaacaGGNaaaaOGa eyypa0JaamOvamaaDaaaleaacaaIXaGaamOBaaqaaiaacEcaaaGccq GH9aqpcqGHsisldaqadaqaaiaadAfadaWgaaWcbaGaaGOmaiaad6ga aeqaaOGaeyOeI0IaamOvamaaBaaaleaacaaIXaGaamOBaaqabaaaki aawIcacaGLPaaaaeaacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaamOv amaaDaaaleaacaaIYaGaamOBaaqaaiaacEcaaaGccqGHRaWkcaWGTb WaaSbaaSqaaiaaigdaaeqaaOGaamOvamaaDaaaleaacaaIXaGaamOB aaqaaiaacEcaaaGccqGH9aqpcaWGTbWaaSbaaSqaaiaaikdaaeqaaO GaamOvamaaBaaaleaacaaIYaGaamOBaaqabaGccqGHRaWkcaWGTbWa aSbaaSqaaiaaigdaaeqaaOGaamOvamaaBaaaleaacaaIXaGaamOBaa qabaaaaaa@6147@
V'1とV'2を未知量として用いる系の方程式は、簡単に解くことができます:(6) V 2 n ' = ( m 2 m 1 m 2 + m 1 ) V 2 n + ( 2 m 1 m 1 + m 2 ) V 1 n V 1 n ' = ( m 1 m 2 m 1 + m 2 ) V 1 n + ( 2 m 2 m 1 + m 2 ) V 2 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakq aabeqaaiaadAfadaqhaaWcbaGaaGOmaiaad6gaaeaacaGGNaaaaOGa eyypa0ZaaeWaaeaadaWcaaqaaiaad2gadaWgaaWcbaGaaGOmaaqaba GccqGHsislcaWGTbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamyBamaa BaaaleaacaaIYaaabeaakiabgUcaRiaad2gadaWgaaWcbaGaaGymaa qabaaaaaGccaGLOaGaayzkaaGaamOvamaaBaaaleaacaaIYaGaamOB aaqabaGccqGHRaWkdaqadaqaamaalaaabaGaaGOmaiaad2gadaWgaa WcbaGaaGymaaqabaaakeaacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaamyBamaaBaaaleaacaaIYaaabeaaaaaakiaawIcacaGLPa aacaWGwbWaaSbaaSqaaiaaigdacaWGUbaabeaaaOqaaiaadAfadaqh aaWcbaGaaGymaiaad6gaaeaacaGGNaaaaOGaeyypa0ZaaeWaaeaada Wcaaqaaiaad2gadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGTbWa aSbaaSqaaiaaikdaaeqaaaGcbaGaamyBamaaBaaaleaacaaIXaaabe aakiabgUcaRiaad2gadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGa ayzkaaGaamOvamaaBaaaleaacaaIXaGaamOBaaqabaGccqGHRaWkda qadaqaamaalaaabaGaaGOmaiaad2gadaWgaaWcbaGaaGOmaaqabaaa keaacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyBamaaBa aaleaacaaIYaaabeaaaaaakiaawIcacaGLPaaacaWGwbWaaSbaaSqa aiaaikdacaWGUbaabeaaaaaa@7628@

これらの関係は質量の比に依存することにご留意ください。

ボールはt方向については速度変化に悩まされることはないので、それぞれの球の速度の接線成分は維持され、以下が得られます:(7) V 1 t ' = V 1 t = V 1 cos θ 1 V 2 t ' = V 2 t = V 2 cos θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaakq aabeqaaiaadAfadaqhaaWcbaGaaGymaiaadshaaeaacaGGNaaaaOGa eyypa0JaamOvamaaBaaaleaacaaIXaGaamiDaaqabaGccqGH9aqpca WGwbWaaSbaaSqaaiaaigdaaeqaaOGaci4yaiaac+gacaGGZbGaeqiU de3aaSbaaSqaaiaaigdaaeqaaaGcbaGaamOvamaaDaaaleaacaaIYa GaamiDaaqaaiaacEcaaaGccqGH9aqpcaWGwbWaaSbaaSqaaiaaikda caWG0baabeaakiabg2da9iaadAfadaWgaaWcbaGaaGOmaaqabaGcci GGJbGaai4BaiaacohacqaH4oqCdaWgaaWcbaGaaGOmaaqabaaaaaa@57E8@
衝撃の後の速度のノルムはその結果以下の関係式となります。(8) V 1 ' = ( ( V 1 n ' ) 2 + ( V 1 t ' ) 2 ) 1 / 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGwbWaa0baaSqaaiaaigdaaeaacaGGNaaaaOGaeyypa0ZaaeWa aeaadaqadaqaaiaadAfadaqhaaWcbaGaaGymaiaad6gaaeaacaGGNa aaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYa aeWaaeaacaWGwbWaa0baaSqaaiaaigdacaWG0baabaGaai4jaaaaaO GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMca amaaCaaaleqabaGaaGymaiaac+cacaaIYaaaaaaa@4CEB@ (9) V 2 ' = ( ( V 2 n ' ) 2 + ( V 2 t ' ) 2 ) 1 / 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGwbWaa0baaSqaaiaaikdaaeaacaGGNaaaaOGaeyypa0ZaaeWa aeaadaqadaqaaiaadAfadaqhaaWcbaGaaGOmaiaad6gaaeaacaGGNa aaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYa aeWaaeaacaWGwbWaa0baaSqaaiaaikdacaWG0baabaGaai4jaaaaaO GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMca amaaCaaaleqabaGaaGymaiaac+cacaaIYaaaaaaa@4CEE@

この例題では、ホールは同じ質量を持ち: m1 = m2

したがって、 V 2 ' = V 1 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGwbWaa0baaSqaaiaaikdaaeaacaGGNaaaaOGaeyypa0JaamOv amaaBaaaleaacaaIXaGaamOBaaqabaaaaa@3F0B@ および V 1 n ' = V 2 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGwbWaa0baaSqaaiaaigdacaWGUbaabaGaai4jaaaakiabg2da 9iaadAfadaWgaaWcbaGaaGOmaiaad6gaaeqaaaaa@3FFE@

速度のノルムは以下の関係を用いて与えられ、初速度と角度に依存します。解析解を決めるために用いられます(衝突後の角度と速度):(10) V 1 ' = ( ( V 2 ) 2 sin 2 θ 2 + ( V 1 ) cos 2 θ 1 ) 1 / 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGwbWaa0baaSqaaiaaigdaaeaacaGGNaaaaOGaeyypa0ZaaeWa aeaadaqadaqaaiaadAfadaWgaaWcbaGaaGOmaaqabaaakiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaGcciGGZbGaaiyAaiaac6gadaah aaWcbeqaaiaaikdaaaGccqaH4oqCdaWgaaWcbaGaaGOmaaqabaGccq GHRaWkdaqadaqaaiaadAfadaWgaaWcbaGaaGymaaqabaaakiaawIca caGLPaaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccq aH4oqCdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaahaaWc beqaaiaaigdacaGGVaGaaGOmaaaaaaa@5595@ (11) V 2 ' = ( ( V 1 ) 2 sin 2 θ 1 + ( V 2 ) cos 2 θ 2 ) 1 / 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGwbWaa0baaSqaaiaaikdaaeaacaGGNaaaaOGaeyypa0ZaaeWa aeaadaqadaqaaiaadAfadaWgaaWcbaGaaGymaaqabaaakiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaGcciGGZbGaaiyAaiaac6gadaah aaWcbeqaaiaaikdaaaGccqaH4oqCdaWgaaWcbaGaaGymaaqabaGccq GHRaWkdaqadaqaaiaadAfadaWgaaWcbaGaaGOmaaqabaaakiaawIca caGLPaaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccq aH4oqCdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaadaahaaWc beqaaiaaigdacaGGVaGaaGOmaaaaaaa@5596@
速度の投影を記録することにより、衝撃後の方向は関係式(9)を用いて評価できます。解析解を決めるために用いられます(衝突後の角度と速度):(12) θ 1 ' = arcsin ( V 2 V 1 sin θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaH4oqCdaqhaaWcbaGaaGymaaqaaiaacEcaaaGccqGH9aqpciGG HbGaaiOCaiaacogacaGGZbGaaiyAaiaac6gadaqadaqaamaalaaaba GaamOvamaaBaaaleaacaaIYaaabeaaaOqaaiaadAfadaWgaaWcbaGa aGymaaqabaaaaOGaci4CaiaacMgacaGGUbGaeqiUde3aaSbaaSqaai aaikdaaeqaaaGccaGLOaGaayzkaaaaaa@4D7C@ (13) θ 2 ' = arcsin ( V 1 V 2 sin θ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaH4oqCdaqhaaWcbaGaaGOmaaqaaiaacEcaaaGccqGH9aqpciGG HbGaaiOCaiaacogacaGGZbGaaiyAaiaac6gadaqadaqaamaalaaaba GaamOvamaaBaaaleaacaaIXaaabeaaaOqaaiaadAfadaWgaaWcbaGa aGOmaaqabaaaaOGaci4CaiaacMgacaGGUbGaeqiUde3aaSbaaSqaai aaigdaaeqaaaGccaGLOaGaayzkaaaaaa@4D7C@

結果

数値結果の解析解との比較

図 6 は数値シミュレーションを用いて得られた衝突前と後のボールの中心点の軌跡を示します。

rad_ex_fig_9-16
図 6. ボールの軌跡(重心)

rad_ex_fig_9-17
図 7. 速度変化 V i = 2 K E i m a s s i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGPbaabeaakiabg2da9maakaaabaWaaSaaaeaacaaIYaGa am4saiaadweadaWgaaWcbaGaamyAaaqabaaakeaacaWGTbGaamyyai aadohacaWGZbWaaSbaaSqaaiaadMgaaeqaaaaaaeqaaaaa@4177@ (40 msで衝突)

rad_ex_fig_9-18
図 8. エネルギー評価
与えられた初期値 V 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaa@3AB0@ V 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaa@3AB0@ θ 1 θ 2に対する、シミュレーション結果を表 1に記します。
表 1. 衝突後の結果の比較
  数値解析結果 解析解
θ 1 42.27° 44.72°
θ 2 26.75° 26.48°
V 1' 0.731 m/s .731 m/s
V 2' 0.969 m/s 0.977 m/s

まとめ

シミュレーションが解析解で検証されています。16節点厚肉シェル要素は完全積分要素でアワグラスエネルギーはあ りません。このモデル化は良い運動量の伝達をもたらします。しかしながら、TYPE16インターフェースは節点と厚肉シェルの接触であるためにセカンダリ側(ボール2)の2次曲面を考慮しません。正確な結果は、球体間の衝撃を裏付けるためセカンダリ側の2次曲面への貫通のない衝突により得られます。

メッシュを細かくすることで結果は改良されるかもしれません。