RD-E:4701 Kupfer試験でのコンクリートの検証

Kupfer試験でのコンクリートの検証

Radiossはコンクリートの圧縮と引張り下の破壊をモデル化する材料モデルLAW24およびLAW81を含んでいます。この例題では、シミュレーション結果は実験データと比較されます。

ex47_concrete
図 1.

使用されるオプションとキーワード

入力ファイル

必要なモデルファイルのダウンロードについては、モデルファイルへのアクセスを参照してください。

モデル概要

10mmのコンクリートの立方体が、実験と同じ境界条件の1つの3次元要素を使ってモデル化されます。

ex47_concrete
図 2. 立方体の形状

安定性の理由から、1つの要素モデルは時間ステップスケールファクター0.1を使用する必要があります。

ソリッドのプロパティは:
  • qa = 1.1およびqb= 0.05(デフォルト値)
  • Isolid= 24
  • Iframe= 2(共回転定式化)
  • Istrain= 1(ポストでのひずみの取り扱いのため)

この例題では、2つの材料則/MAT/LAW24および/MAT/LAW81が実験データと比較されます。

以下の単位系が用いられます: mm、ms、g、MPa

使用される材料データ1
コンクリート材料則(/MAT/LAW24
初期密度
0.0022 [gmm3] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaamaalaaabaGaai4zaaqaaiaac2gacaGGTbWaaWbaaSqabeaacaaIZaaaaaaaaOGaay5waiaaw2faaaaa@3D2B@
コンクリート弾性のヤング率
Ec=31700[MPa] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaSbaaSqaaiaadogaaeqaaOGaeyypa0JaaG4maiaaigdacaaI3aGaaGimaiaaicdacaGGBbGaciytaiaaccfacaGGHbGaciyxaaaa@4251@
ポアソン比
ν=0.22 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcqGH9aqpcaaIWaGaaiOlaiaaikdacaaIYaaaaa@3D0A@
硬化パラメータのコンクリート塑性初期値
ky=0.35 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRbWaaSbaaSqaaiaadMhaaeqaaOGaeyypa0JaaGimaiaac6cacaaIZaGaaGynaaaa@3D7A@
コンクリート塑性の降伏時ダイタランシー係数
αy=0.6 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaOqaaiabeg7aHnaaBaaaleaacaWG5baabeaakiabg2da9iabgkHiTiaaicdacaGGUaGaaGOnaaaa@4047@
コンクリート塑性の破壊時ダイタランシー係数
αf=0.2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaOqaaiabeg7aHnaaBaaaleaacaWGMbaabeaakiabg2da9iaaicdacaGGUaGaaGOmaaaa@3F43@
Kupfer実験データから読み出されたデータ
コンクリートの単軸圧縮強度
fc=32.22[MPa] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaOqaaiaadAgadaWgaaWcbaGaam4yaaqabaGccqGH9aqpcaaIZaGaaGOmaiaac6cacaaIYaGaaGOmaiaacUfaciGGnbGaaiiuaiaacggaciGGDbaaaa@4455@
コンクリートの単軸引張強度
0.01 fc MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@、そこで右記に設定; ftfc=0.1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaOqaamaaliaabaGaamOzamaaBaaaleaacaWG0baabeaaaOqaaiaadAgadaWgaaWcbaGaam4yaaqabaaaaOGaeyypa0JaaGimaiaac6cacaaIXaaaaa@40B7@ LAW24でのデフォルト=0.1)
コンクリートの2軸強度
1.15 fc MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@、そこで右記に設定; fbfc=1.15 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaOqaamaaliaabaGaamOzamaaBaaaleaacaWGIbaabeaaaOqaaiaadAgadaWgaaWcbaGaam4yaaqabaaaaOGaeyypa0JaaGymaiaac6cacaaIXaGaaGynaaaa@4165@
その他のパラメータはLAW24でのデフォルトのままとして構いません。なぜならば、これらのデフォルト値は一般的なコンクリート材料の代表的な値であるためです。
コンクリート材料則(/MAT/LAW81
初期密度
0.0022 [gmm3] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaamaalaaabaGaai4zaaqaaiaac2gacaGGTbWaaWbaaSqabeaacaaIZaaaaaaaaOGaay5waiaaw2faaaaa@3D2B@
体積弾性率
K=Ec3(12ν)=18869.048[MPa] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaeyypa0ZaaSaaaeaacaWGfbWaaSbaaSqaaiaadogaaeqaaaGcbaGaaG4mamaabmaabaGaaGymaiabgkHiTiaaikdacqaH9oGBaiaawIcacaGLPaaaaaGaeyypa0JaaeymaiaabIdacaqG4aGaaeOnaiaabMdacaqGUaGaaeimaiaabsdacaqG4aGaae4waiaab2eacaqGqbGaaeyyaiaab2faaaa@4D58@
ヤング率
Ec=31700[MPa] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaSbaaSqaaiaadogaaeqaaOGaeyypa0JaaG4maiaaigdacaaI3aGaaGimaiaaicdacaGGBbGaciytaiaaccfacaGGHbGaciyxaaaa@4251@
ポアソン比
ν=0.22 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcqGH9aqpcaaIWaGaaiOlaiaaikdacaaIYaaaaa@3D0A@
せん断係数
G=Ec2(1+ν)=12991.8[MPa] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbGaeyypa0ZaaSaaaeaacaWGfbWaaSbaaSqaaiaadogaaeqaaaGcbaGaaGOmamaabmaabaGaaGymaiabgUcaRiabe27aUbGaayjkaiaawMcaaaaacqGH9aqpcaqGXaGaaeOmaiaabMdacaqG5aGaaeymaiaab6cacaqG4aGaae4waiaab2eacaqGqbGaaeyyaiaab2faaaa@4B18@
下記のデータは、入力ファイルに含まれるComposeComposeスクリプトを用いて実験データにカーブフィッティングさせることによって計算されました。
摩擦角
ϕ=68.35 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzcqGH9aqpcaqG2aGaaeioaiaab6cacaqGZaGaaeynamaaCaaaleqabaGaeSigI8gaaaaa@3F30@
比率
α=0.4186898 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqycqGH9aqpcaqGWaGaaeOlaiaabsdacaqGXaGaaeioaiaabAdacaqG4aGaaeyoaiaabIdaaaa@4082@
一定に設定されたcap制限圧力
Pb=0.838fc=27 [MPa] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaSbaaSqaaiaadkgaaeqaaOGaeyypa0JaaGimaiaac6cacaaI4aGaaG4maiaaiIdacaqGSaGaaeiiaiaaykW7caWGMbWaaSbaaSqaaiaadogaaeqaaOGaaeypaiaabkdacaqG3aGaaeiiaiaabUfacaqGnbGaaeiuaiaabggacaqGDbaaaa@4A0A@
cap開始圧力
Pa=αPb=0.351, fc=11.305 [MPa] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaSbaaSqaaiaadggaaeqaaOGaeyypa0JaeqySdeMaeyyXICTaamiuamaaBaaaleaacaWGIbaabeaakiaab2dacaqGWaGaaeOlaiaabodacaqG1aGaaeymaiaabYcacaqGGaGaaGPaVlaadAgadaWgaaWcbaGaam4yaaqabaGccqGH9aqpcaaIXaGaaGymaiaac6cacaaIZaGaaGimaiaaiwdacaqGGaGaae4waiaab2eacaqGqbGaaeyyaiaab2faaaa@53B2@
一定に設定された材料粘着力
c=0.169175fc=5.4508 [MPa] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbGaeyypa0JaaGimaiaac6cacaaIXaGaaGOnaiaaiMdacaaIXaGaaG4naiaaiwdacaqGSaGaaeiiaiaaykW7caWGMbWaaSbaaSqaaiaadogaaeqaaOGaeyypa0JaaGynaiaac6cacaaI0aGaaGynaiaaicdacaaI4aGaaeiiaiaabUfacaqGnbGaaeiuaiaabggacaqGDbaaaa@4E79@
注: この例では、応力はfc MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ によってスケーリングされています。コンクリート材料について一般的に行われるのは、圧縮で圧力を正に定義することです。したがって、応力は引張で負となります。

シミュレーションの反復

この例題の目的はシミュレーション結果をKupfer 2試験からの実験データと比較することです。
表 1. 荷重と破壊
試験 主応力 軸性 破壊応力
T000

単軸引張

σ1=0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@σ2=0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@σ3=1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ 1/3 0.1 fc MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@
C000

単軸圧縮

σ1=1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGymaaaa@3DE4@ σ2=0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@σ3=0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ -1/3 fc MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@
CC00

2軸圧縮

σ1=1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGymaaaa@3DE4@ σ2=1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGymaaaa@3DE5@ σ3=0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ -2/3 1.15 fc MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@
CC01

圧縮 / 圧縮

σ1=0.052 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6cacaaI1aGaaGOmaaaa@4010@ σ2=0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGymaaaa@3DE5@ σ3=1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGymaaaa@3DE6@ -0.5849 1.22 fc MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@
TC01

圧縮 / 引張

σ1=0.052 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6cacaaI1aGaaGOmaaaa@4010@ σ2=0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGymaaaa@3DE5@ σ3=1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGymaaaa@3DE6@ -0.3077 0.8 fc MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@
TC02

圧縮 / 引張

σ1=0.102 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6cacaaI1aGaaGOmaaaa@4010@ σ2=0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGymaaaa@3DE5@ σ3=1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGymaaaa@3DE6@ -0.2838 0.6 fc MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@
TC03

圧縮 / 引張

σ1=0.204 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGimaiaac6cacaaI1aGaaGOmaaaa@4010@ σ2=0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGymaaaa@3DE5@ σ3=1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGymaaaa@3DE6@ -0.2377 0.35 fc MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@
軸性は、主応力を使って計算されます:(1) σ*=σmσVM MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaeq4Wdm3damaaCaaaleqabaWdbiaacQcaaaGccqGH9aqpdaWcaaWdaeaapeGaae4Wd8aadaWgaaWcbaWdbiaad2gaa8aabeaaaOqaa8qacqaHdpWCpaWaaSbaaSqaa8qacaWGwbGaamytaaWdaeqaaaaaaaa@4081@

ここで、σm=p=13(σ1+σ2+σ3) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaae4Wd8aadaWgaaWcbaWdbiaad2gaa8aabeaakiabg2da9iaadchapeGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaiodaaaWaaeWaa8aabaWdbiaabo8apaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey4kaSIaae4Wd8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHRaWkcaqGdpWdamaaBaaaleaapeGaaG4maaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@4858@ およびσVM=12[(σ1σ2)2+(σ2σ3)2+(σ3σ1)2] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaae4Wd8aadaWgaaWcbaWdbiaadAfacaWGnbaapaqabaGcpeGaeyypa0ZaaOaaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaamaadmaapaqaa8qadaqadaWdaeaapeGaae4Wd8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaqGdpWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSYaaeWaa8aabaWdbiaabo8apaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0Iaae4Wd8aadaWgaaWcbaWdbiaaiodaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRmaabmaapaqaa8qacaqGdpWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgkHiTiaabo8apaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaakiaawUfacaGLDbaaaSqabaaaaa@5A1B@

図 3 は、σVM versus p MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaOqaaiabeo8aZnaaBaaaleaacaWGwbGaamytaaqabaGccaqGGaqcaaIaaeODaiaabwgacaqGYbGaae4CaiaabwhacaqGZbGccaqGGaGaamiCaaaa@4617@応力空間でのコンクリート材料実験破壊応力(fc MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ によりスケーリング)を示しています。


図 3. 実験データ(フォンミーゼス / 圧力曲線)

結果

LAW24およびLAW81での破壊結果

LAW24での破壊曲線は:(2) rf=1a(b+b2a(σmc) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaamOCamaaBaaaleaacaWGMbaabeaakiabg2da9maalaaabaGaaGymaaqaaiaadggaaaGaaiikaiaadkgacqGHRaWkdaGcaaqaaiaadkgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGHbGaaiikaiabeo8aZnaaBaaaleaacaWGTbaabeaakiabgkHiTiaadogacaGGPaaaleqaaaaa@49A7@

ここで、 b=12(bc+bt) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaamOyaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiaadkgadaWgaaWcbaGaam4yaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaadshaaeqaaOGaaiykaaaa@424C@

Radiossは異なる強度入力fc MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbba9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcbaGaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ ftfc MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaOqaamaaliaabaGaamOzamaaBaaaleaacaWG0baabeaaaOqaaiaadAgadaWgaaWcbaGaam4yaaqabaaaaaaa@3D80@ を使ってカーブフィッティングを行い、式 2rf MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaOqaaiaadkhadaWgaaWcbaGaamOzaaqabaaaaa@3B63@ 破壊曲線(緑色)を得ます。


図 4. 実験データとLAW24解析データ(フォンミーゼス / 圧力曲線)
LAW81では破壊曲線と降伏曲線は同じで、下記の2つのパートに描写されます:
  1. pPa MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbGaeyizImQaamiuamaaBaaaleaacaWGHbaabeaaaaa@3BF9@

    右記で線形; ptanϕ+c MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbGaciiDaiaacggacaGGUbGaeqy1dyMaey4kaSIaam4yaaaa@3EC0@

    破壊は σmtan(68.35)+5.4508 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCdaWgaaWcbaGaamyBaaqabaGcciGG0bGaaiyyaiaac6gacaGGOaGaaGOnaiaaiIdacaGGUaGaaG4maiaaiwdadaahaaWcbeqaaiablIHiVbaakiaacMcacqGHRaWkcaaI1aGaaiOlaiaaisdacaaI1aGaaGimaiaaiIdaaaa@48EA@

  2. Pa<pPb MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaSbaaSqaaiaadggaaeqaaOGaeyipaWJaamiCaiabgsMiJkaadcfadaWgaaWcbaGaamOyaaqabaaaaa@3EEF@ (cap)
    cap曲線は:(3) 1(ppapbpa)2(ptanϕ+c) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacaaIXaGaeyOeI0YaaeWaaeaadaWcaaqaaiaadchacqGHsislcaWGWbWaaSbaaSqaaiaadggaaeqaaaGcbaGaamiCamaaBaaaleaacaWGIbaabeaakiabgkHiTiaadchadaWgaaWcbaGaamyyaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqabaGccqGHflY1daqadaqaaiaadchaciGG0bGaaiyyaiaac6gacqaHvpGzcqGHRaWkcaWGJbaacaGLOaGaayzkaaaaaa@4E68@
    破壊は:(4) 1(σm272711.305)2σmtan(68.35)+5.4508 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGcaaqaaiaaigdacqGHsisldaqadaqaamaalaaabaGaeq4Wdm3aaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IaaGOmaiaaiEdaaeaacaaIYaGaaG4naiabgkHiTiaaigdacaaIXaGaaiOlaiaaiodacaaIWaGaaGynaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaabeaakiabgwSixlabeo8aZnaaBaaaleaacaWGTbaabeaakiabgwSixlGacshacaGGHbGaaiOBaiaacIcacaaI2aGaaGioaiaac6cacaaIZaGaaGynamaaCaaaleqabaGaeSigI8gaaOGaaiykaiabgUcaRiaaiwdacaGGUaGaaGinaiaaiwdacaaIWaGaaGioaaaa@5DDF@
LAW81の場合のこれら破壊曲線の2つのパートは:


図 5. 実験データとLAW81解析データ(フォンミーゼス / 圧力曲線)
異なる荷重経路(Kupfer 試験より)におけるLAW24およびLAW81での破壊結果は次のように示されます:


図 6. LAW24解析およびシミュレーション結果(荷重経路)(フォンミーゼス / 圧力曲線)


図 7. LAW81解析およびシミュレーション結果(荷重経路)(フォンミーゼス / 圧力曲線)
LAW24破壊結果とLAW81破壊結果を実験データと比較すると、LAW81結果はLAW24よりも良好です。


図 8. 実験データとLAW24 Radiossデータ(フォンミーゼス / 圧力曲線)


図 9. 実験データとLAW81 Radiossデータ(フォンミーゼス / 圧力曲線)
LAW81の破壊結果は、cap領域においてさえも実験データと合致します。LAW24結果については、ほとんどが解析結果と良好に一致しています; CC00以外は解析曲線とやや大きな差異が見られますが、実験データとほぼ同じです。下に示すCC00応力-ひずみ図は、ほとんど同じ破壊応力を示しています。


図 10. CC00実験データとLAW24 Radioss結果

コンクリート引張試験の結果

コンクリートは引張では荷重をあまりサポートしません。LAW24では、単軸引張破壊(応力によってモデル化)および弾性係数の軟化の挙動はHt,Dsup,εmax MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamisamaaBaaaleaacaWG0baabeaakiaacYcacaaMi8UaaGPaVlaadseapaWaaSbaaSqaa8qaciGGZbGaaiyDaiaacchaa8aabeaakiaacYcacqaH1oqzdaWgaaWcbaGaciyBaiaacggacaGG4baabeaaaaa@453D@によって定義されます。軟化係数Ht=Ec MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibWaaSbaaSqaaiaadshaaeqaaOGaeyypa0JaeyOeI0IaamyramaaBaaaleaacaWGJbaabeaaaaa@3C2B@ (デフォルト)が引張の場合設定されます。上記の曲線のピークは、入力においてftfc=0.1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWccaqaaiaadAgadaWgaaWcbaGaamiDaaqabaaakeaacaWGMbWaaSbaaSqaaiaadogaaeqaaaaakiabg2da9iaaicdacaGGUaGaaGymaaaa@3DC0@(デフォルト)で定義されている0.1です。

LAW81では、引張と圧縮に同じ体積弾性率とせん断係数が使用されます。LAW24では、E=(1Dsup)Ec MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbGaeyypa0ZaaeWaaeaacaaIXaGaeyOeI0IaamiramaaBaaaleaaciGGZbGaaiyDaiaacchaaeqaaaGccaGLOaGaayzkaaGaeyyXICTaamyramaaBaaaleaacaWGJbaabeaaaaa@436C@ を用いて軟化後のコンクリートでの残りの剛性を表すことができます。これはLAW81では不可能です。


図 11. 単軸引張T000実験データとRadioss(LAW24およびLAW81)結果

まとめ

複雑な荷重下で、コンクリートの破壊の挙動が2つのRadioss材料モデルLAW24およびLAW81を用いて示され、結果が実験と比較されました。LAW24の場合、実験データが入手できなければ、デフォルト値が良好な選択肢です。LAW81の場合、材料パラメータϕ,c,α,Pb MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzcaGGSaGaam4yaiaacYcacqaHXoqycaGGSaGaamiuamaaBaaaleaacaWGIbaabeaaaaa@3FAF@ は、少なくとも4つの実験試験を用いたカーブフィッティングで計算される必要があります。

参考文献

1
Han, D. J., and Wai-Fah Chen."A nonuniform hardening plasticity model for concrete materials."Mechanics of materials 4, no. 3-4 (1985): 283-302
2
Kupfer, Helmut B., and Kurt H. Gerstle. "Behavior of concrete under biaxial stresses." Journal of the Engineering Mechanics Division 99, no. 4 (1973): 853-866